2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于知识的智能优化引导方法研究进展

邢立宁 陈英武

邢立宁, 陈英武. 基于知识的智能优化引导方法研究进展. 自动化学报, 2011, 37(11): 1285-1289. doi: 10.3724/SP.J.1004.2011.01285
引用本文: 邢立宁, 陈英武. 基于知识的智能优化引导方法研究进展. 自动化学报, 2011, 37(11): 1285-1289. doi: 10.3724/SP.J.1004.2011.01285
XING Li-Ning, CHEN Ying-Wu. Research Progress on Intelligent Optimization Guidance Approaches Using Knowledge. ACTA AUTOMATICA SINICA, 2011, 37(11): 1285-1289. doi: 10.3724/SP.J.1004.2011.01285
Citation: XING Li-Ning, CHEN Ying-Wu. Research Progress on Intelligent Optimization Guidance Approaches Using Knowledge. ACTA AUTOMATICA SINICA, 2011, 37(11): 1285-1289. doi: 10.3724/SP.J.1004.2011.01285

基于知识的智能优化引导方法研究进展

doi: 10.3724/SP.J.1004.2011.01285
详细信息
    通讯作者:

    邢立宁 国防科学技术大学信息系统与管理学院讲师. 主要研究方向为智能优化方法,管理理论与管理决策技术. E-mail: xinglining@gmail.com

Research Progress on Intelligent Optimization Guidance Approaches Using Knowledge

  • 摘要: 为了提高智能优化方法的优化性能,国内外学者通过知识来加强对优化过程的引导.对基于 知识的智能优化引导方法进行了综述:一方面通过传统人工智能手段来实现对智能优化方法的引导; 另一方面通过特定知识模型来实现对智能优化方法的引导.从前期优化过程中挖掘有用知识,采用知识来引导后续优化过程,极大地提高了智能优化方法的优化性能.
  • [1] Holland J H. Adaptation in Natural and Artificial Systems. Cambridge: The MIT Press, 1975[2] Cavaretta M J. Using a culture algorithm to control genetic operators. In: Proceedings of the 3rd Annual Conference on Evolutionary Programming. San Diego, California: World Scientific Publishing, 1994. 24-26[3] Sebag M, Ravise C, Schoenauer M. Controlling evolution by means of machine learning. In: Proceedings of the 5th Annual Conference on Evolutionary Programming. San Diego, USA: The MIT Press, 1996. 57-66[4] Gu Hui, Gong Yu-Chang, Zhao Zhen-Xi. A knowledge model based genetic algorithm. Computer Engineering, 2000, 26(5): 19-20(顾慧, 龚育昌, 赵振西. 基于知识模型的改进遗传算法. 计算机工程, 2000, 26(5): 19-20)[5] Fan Lei, Ruan Huai-Zhong, Jiao Yu, Luo Wen-Jian, Cao Xian-Bin. Conduct evolution using induction learning. Journal of University of Science and Technology of China, 2001, 31(5): 565-634(范磊, 阮怀忠, 焦誉, 罗文坚, 曹先彬. 用归纳学习引导进化. 中国科学技术大学学报, 2001, 31(5): 565-634)[6] Cao Xian-Bin, Xu Kai, Zhang Jie, Wang Xu-Fa. Ecological evolution model guided by life period. Journal of Software, 2000, 11(6): 823-828(曹先彬, 许凯, 章洁, 王煦法. 基于生命期引导的生态进化模型. 软件学报, 2000, 11(6): 823-828)[7] Cen Yu-Sen, Xiong Fang-Min, Zeng Bi-Qing. Grouping particle swarm optimization algorithms based on knowledge space. Computer Engineering and Design, 2010, 31(7): 1562-1565(岑宇森, 熊芳敏, 曾碧卿. 基于知识空间的分组式粒子群算法. 计算机工程与设计, 2010, 31(7): 1562-1565)[8] Li Ya-Nan, Zhang Li-Zi, Shu Juan, Leng Jiao-Lin, Yang Yi-Han. Application of expert knowledge adopted genetic algorithm to optimization of reactive power planning. Power System Technology, 2001, 25(7): 14-17(李亚男, 张粒子, 舒隽, 冷教麟, 杨以涵. 结合专家知识的遗传算法在无功规划优化中的应用. 电网技术, 2001, 25(7): 14-17)[9] Chai Xiao-Long. Ant swarm planning algorithm optimized by domain knowledge. Computer Engineering and Applications, 2010, 46(14): 17-19(柴啸龙. 领域知识优化的蚁群规划算法. 计算机工程与应用, 2010, 46(14): 17-19)[10] Chou F D. An experienced learning genetic algorithm to solve the single machine total weighted tardiness scheduling problem. Expert Systems with Applications, 2009, 36(2): 3857-3865[11] Sim K M, Guo Y Y, Shi B Y. BLGAN: Bayesian learning and genetic algorithm for supporting negotiation with incomplete information. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(1): 198-211[12] Liu F, Zeng G Z. Study of genetic algorithm with reinforcement learning to solve the TSP. Expert Systems with Applications, 2009, 36(3): 6995-7001[13] Ho W H, Tsai J T, Lin B T, Chou J H. Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm. Expert Systems with Applications, 2009, 36(2): 3216-3222[14] Hong Y, Kwong S. To combine steady-state genetic algorithm and ensemble learning for data clustering. Pattern Recognition Letters, 2008, 29(9): 1416-1423[15] Chi H M, Ersoy O K, Moskowitz H, Ward J. Modeling and optimizing a vendor managed replenishment system using machine learning and genetic algorithms. European Journal of Operational Research, 2007, 180(1): 174-193[16] Ho N B, Tay J C, Lai E M K. An effective architecture for learning and evolving flexible job-shop schedules. European Journal of Operational Research, 2007, 179(2): 316-333[17] Reynolds R G. An introduction to cultural algorithms. In: Proceedings of the 3rd Annual Conference on Evolutionary Programming. San Diego, USA: World Scientific Publishing, 1994. 131-139[18] Louis S J, McDonnell J. Learning with case-injected genetic algorithms. IEEE Transactions on Evolutionary Computation, 2004, 8(4): 316-328[19] Kamall K, Jiang L J, Yen J, Wang K W. Using Q-learning and genetic algorithms to improve the efficiency of weight adjustments for optimal control and design problems. Journal of Computing and Information Science in Engineering, 2007, 7(4): 302-308[20] Juang C F, Lu C M. Ant colony optimization incorporated with fuzzy Q-learning for reinforcement fuzzy control. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2009, 39(3): 597-608[21] Michalski R S. Learnable evolution model: evolution process guided by machine learning. Machine Learning, 2000, 38(1): 9-40[22] Chung C J, Reynolds R G. A testbed for solving optimization problems using cultural algorithm. In: Proceedings of the 5th Annual Conference on Evolutionary Programming. San Diego, USA: The MIT Press, 1996. 225-236[23] Branke J. Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of the Congress on Evolutionary Computation. Washington D.C., USA: IEEE, 1999. 1875-1882[24] Gantovnik V B, Anderson-Cook C M, Gurdal Z, Watson L T. A genetic algorithm with memory for mixed discrete-continuous design optimization. Computers and Structures, 2000, 81(20): 2003-2009[25] Gantovnik V B, Gurdal Z, Watson L T. A genetic algorithm with memory for optimal design of laminated sandwich composite panels. Composite Structures, 2002, 58(4): 513-520[26] Louis S, Li G. Augmenting genetic algorithms with memory to solve traveling salesman problems. In: Proceedings of the Joint Conference on Information Sciences. North Carolina, USA: Duke University Press, 1997. 108-111[27] Yang S X. Memory-based immigrants for genetic algorithms in dynamic environments. In: Proceedings of the Conference on Genetic and Evolutionary Computation. New York, USA: ACM, 2005. 1115-1122[28] Yang S X. Genetic algorithms with memory and elitism-based immigrants in dynamic environments. Evolutionary Computation, 2008, 16(3): 385-416[29] Su Miao, Qian Hai, Wang Xu-Fa. Immune memory-based ant colony algorithm for weapon-target assignment solution. Computer Engineering, 2004, 34(4): 215-217(苏淼, 钱海, 王煦法. 基于免疫记忆的蚁群算法的WTA问题求解. 计算机工程, 2004, 34(4): 215-217)[30] Acan A. An external memory implementation in ant colony optimization. In: Proceedings of the 4th International Workshop on Ant Colony Optimization and Swarm Intelligence. Brussels, Belgium: Springer, 2004. 73-82[31] Acan A. An external partial permutations memory for ant colony optimization. In: Proceedings of the 5th European Conference on Evolutionary Computation in Combinatorial Optimization. Lausanne, Switzerland: Springer, 2005. 1-11[32] Shamsipur M, Zare-Shahabadi V, Hemmateenejad B, Akhond M. An efficient variable selection method based on the use of external memory in ant colony optimization. Application to QSAR/QSPR studies. Analytica Chimica Acta, 2009, 646(1-2): 39-46[33] Louis S J, Li G. Case injected genetic algorithms for traveling salesman problems. Information Sciences, 2000, 122(2-4): 201-225[34] Rasheed K, Hirsh H. Using case-based learning to improve genetic algorithm based design optimization. In: Proceedings of the 7th International Conference on Genetic Algorithms. East Lansing, USA: Morgan Kaufmann, 1997. 513-520[35] Babbar-Sebens M, Minsker B. A case-based micro interactive genetic algorithm (CBMIGA) for interactive learning and search: methodology and application to groundwater monitoring design. Environmental Modeling and Software, 2010, 25(10): 1176-1187[36] Coletti M. A preliminary study of learnable evolution methodology implemented with C4.5. In: Proceedings of the Congress on Evolutionary Computation. Honolulu, USA: IEEE, 2002. 588-593[37] Wojtusiak J. Initial Study on handling constrained optimization problems in learnable evolution model. In: Proceedings of the Graduate Student Workshop at Genetic and Evolutionary Computation Conference. Seattle, USA: IEEE, 2006. 1-7[38] Kaufman K A, Michalski R S. Applying learnable evolution model to heat exchanger design. In: Proceedings of the 17th National Conference on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial Intelligence. Austin, USA: The MIT Press, 2000. 1014-1019[39] Jourdan L, Corne D, Savic D A, Walters G A. Preliminary investigation of the `learnable evolution model' for faster/better multiobjective water systems design. In: Proceedings of the 3rd International Conference on Evolutionary Multi-Criterion Optimization. Guanajuato, Mexico: Springer, 2005. 841-855[40] Domanski P A, Yashar D, Kaufman K A, Michalski R S. An optimized design of finned-tube evaporators using the learnable evolution model. International Journal of Heating, Ventilating, Air-Conditioning and Refrigerating Research, 2004, 10(2): 201-211[41] Wojtusiak J, Michalski R S. The LEM3 implementation of learnable evolution model and its testing on complex function optimization problems. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. Seattle, USA: ACM, 2006. 1281-1288[42] Michalski R S, Wojtusiak J, Kaufman K A. Progress Report on Learnable Evolution Model. Fairfax, VA: George Mason University, 2007[43] Michalski R S, Wojtusiak J, Kaufman K A. Intelligent optimization via learnable evolution model. In: Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence. Arlington, USA: IEEE, 2006. 332-335[44] Wojtusiak J. The LEM3 system for multitype evolutionary optimization. Computing and Informatics, 2009, 28(3): 225-236[45] Xing Li-Ning, Chen Ying-Wu. Research on the Knowledge-based Intelligent Approaches. Changsha: National University of Defense Technology Press, 2010(邢立宁, 陈英武. 知识型智能优化方法研究. 长沙: 国防科学技术大学出版社, 2010)[46] Xing L N, Chen Y W, Yang K W. A novel mutation operator based on the immunity operation. European Journal of Operational Research, 2009, 197(2): 830-833[47] Xing L N, Chen Y W, Yang K W, Hou F, Shen X S, Cai H P. A hybrid approach combining an improved genetic algorithm and optimization strategies for the asymmetric traveling salesman problem. Engineering Applications of Artificial Intelligence, 2008, 21(8): 1370-1380[48] Xing L N, Rohlfshagen P, Chen Y W, Yao X. An evolutionary approach to the multidepot capacitated arc routing problem. IEEE Transactions on Evolutionary Computation, 2010, 14(3): 356-374[49] Xing L N, Rohlfshagen P, Chen Y W, Yao X. A hybrid ant colony optimization algorithm for the extended capacitated arc routing problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(4): 1110-1123[50] Xing L N, Chen Y W, Wang P, Zhao Q S, Xiong J. A knowledge-based ant colony optimization for flexible job shop scheduling problems. Applied Soft Computing, 2010, 10(3): 888-896[51] Xing L N, Chen Y W, Yang K W. Multi-population interactive coevolutionary algorithm for flexible job shop scheduling problems. Computational Optimization and Applications, 2011, 48(1): 139-155[52] Chai Tian-You, Ding Jin-Liang, Wang Hong, Su Chun-Li. Hybrid intelligent optimal control method for operation of complex industrial processes. Acta Automatica Sinica, 2008, 34(5): 505-515(柴天佑, 丁进良, 王宏, 苏春翌. 复杂工业过程运行的混合智能优化控制方法. 自动化学报, 2008, 34(5): 505-515)[53] Yan Ai-Jun, Chai Tian-You, Yue Heng. Multivariable intelligent optimizing control approach for shaft furnace roasting process. Acta Automatica Sinica, 2006, 32(4): 636-640(严爱军, 柴天佑, 岳恒. 竖炉焙烧过程的多变量智能优化控制. 自动化学报, 2006, 32(4): 636-640)[54] Xing Li-Ning, Chen Ying-Wu. Mission planning of satellite ground station system based on the hybrid ant colony optimization. Acta Automatica Sinica, 2008, 34(4): 414-418(邢立宁, 陈英武. 基于混合蚁群优化的卫星地面站系统任务调度方法. 自动化学报, 2008, 34(4): 414-418)
  • 加载中
计量
  • 文章访问数:  2895
  • HTML全文浏览量:  92
  • PDF下载量:  1647
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-10
  • 修回日期:  2011-04-19
  • 刊出日期:  2011-11-20

目录

    /

    返回文章
    返回