2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

移动机器人基于三维激光测距的室内场景认知

庄严 卢希彬 李云辉

庄严, 卢希彬, 李云辉, . 移动机器人基于三维激光测距的室内场景认知. 自动化学报, 2011, 37(10): 1232-1240. doi: 10.3724/SP.J.1004.2011.01232
引用本文: 庄严, 卢希彬, 李云辉, . 移动机器人基于三维激光测距的室内场景认知. 自动化学报, 2011, 37(10): 1232-1240. doi: 10.3724/SP.J.1004.2011.01232
ZHUANG Yan, LU Xi-Bin, LI Yun-Hui, WANG Wei. Mobile Robot Indoor Scene Cognition Using 3D Laser Scanning. ACTA AUTOMATICA SINICA, 2011, 37(10): 1232-1240. doi: 10.3724/SP.J.1004.2011.01232
Citation: ZHUANG Yan, LU Xi-Bin, LI Yun-Hui, WANG Wei. Mobile Robot Indoor Scene Cognition Using 3D Laser Scanning. ACTA AUTOMATICA SINICA, 2011, 37(10): 1232-1240. doi: 10.3724/SP.J.1004.2011.01232

移动机器人基于三维激光测距的室内场景认知

doi: 10.3724/SP.J.1004.2011.01232
详细信息
    通讯作者:

    庄严 大连理工大学自动化系副教授. 主要研究方向为机器人导航、探索、自主环境建模与环境认知. E-mail: zhuang@dlut.edu.cn

Mobile Robot Indoor Scene Cognition Using 3D Laser Scanning

  • 摘要: 研究了移动机器人在室内三维环境中的场景认知问题.室内场景框架具有结构化特性,而室 内多样化的物体则难以进行模型化表述. 本文利用区域扩张算法进行平面特征的提取,并根据平面属性及其相互间的空间关系,完成室 内场景框架的辨识.为了借鉴图像处理领域的物体识别方法, 本文提出一种基于Bearing Angle模型的激光测距数据表述方法,从而将三维点云数据转换为二维Bearing Angle图. 同一类物体中的个体形态具有多样性,同时观测视角也导致激光测距数据的显著差异.针对这些 问题,采用一种基于Gentleboost算法的有监督学习方法, 并利用物体碎片及其相对于物体中心的位置作为特征,从而完成室内场景中的物体认知. 利用室内场景框架辨识结果在Bearing Angle图中进行天棚、地面、墙壁、房门等区域的标记,并利用所产生的语义信息去除错误的认知结果,从而有助于提高识别率. 利用实际机器人平台所获得的实验结果验证了所提方法的有效性.
  • [1] Sande K E A, Gevers T, Snoek C G M. Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1582-1596[2] Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645[3] Vernaza P, Lee D D. Scalable real-time object recognition and segmentation via cascaded, discriminative Markov random fields. In: Proceedings of the IEEE International Conference on Robotics and Automation. Anchorage, USA: IEEE, 2010. 3102-3107[4] Himmelsbach M, Luettel T, Wuensche H J. Real-time object classification in 3D point clouds using point feature histograms. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, USA: IEEE, 2009. 994-1000[5] Anguelov D, Taskarf B, Chatalbashev V, Koller D, Gupta D, Heitz G, Ng A. Discriminative learning of Markov random fields for segmentation of 3D scan data. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2005. 169-176[6] Agrawal A, Nakazawa A, Takemura H. MMM-classification of 3D range data. In: Proceedings of the IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009. 2003-2008[7] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2001. 511-518[8] Torralba A, Murphy K P, Freeman W T. Sharing visual features for multiclass and multiview object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 854-869[9] Nüchter A, Hertzberg J. Towards semantic maps for mobile robots. Robotics and Autonomous Systems, 2008, 56(11): 915-926[10] Surmann H, Lingemann K, Nuchter A, Hertzberg J. Fast acquiring and analysis of three dimensional laser range data. In: Proceedings of the International Fall Workshop Vision, Modeling and Visualization. Stuttgart, Germany: AkaGmbH, 2001. 59-66[11] Stamos I, Allen P K. 3-D model construction using range and image data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA: IEEE, 2000. 531-536[12] Scaramuzza D, Harati A, Siegwart R. Extrinsic self calibration of a camera and a 3D laser range finder from natural scenes. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA: IEEE, 2007. 4164-4169[13] Friedman J, Tibshirani R, Hastie T. Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 2000, 28(2): 337-374[14] Ullman S, Sali E, Vidal-Naquet M. A fragment-based approach to object representation and classification. In: Proceedings of the 4th International Workshop on Visual Form. London, UK: Springer, 2001. 85-102[15] Macqueen J. Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, USA: University of California Press, 1967. 281-297
  • 加载中
计量
  • 文章访问数:  2558
  • HTML全文浏览量:  74
  • PDF下载量:  1542
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-02
  • 修回日期:  2011-03-02
  • 刊出日期:  2011-10-20

目录

    /

    返回文章
    返回