2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图割的图像分割方法及其新进展

刘松涛 殷福亮

刘松涛, 殷福亮. 基于图割的图像分割方法及其新进展. 自动化学报, 2012, 38(6): 911-922. doi: 10.3724/SP.J.1004.2012.00911
引用本文: 刘松涛, 殷福亮. 基于图割的图像分割方法及其新进展. 自动化学报, 2012, 38(6): 911-922. doi: 10.3724/SP.J.1004.2012.00911
LIU Song-Tao, YIN Fu-Liang. The Basic Principle and Its New Advances of Image Segmentation Methods Based on Graph Cuts. ACTA AUTOMATICA SINICA, 2012, 38(6): 911-922. doi: 10.3724/SP.J.1004.2012.00911
Citation: LIU Song-Tao, YIN Fu-Liang. The Basic Principle and Its New Advances of Image Segmentation Methods Based on Graph Cuts. ACTA AUTOMATICA SINICA, 2012, 38(6): 911-922. doi: 10.3724/SP.J.1004.2012.00911

基于图割的图像分割方法及其新进展

doi: 10.3724/SP.J.1004.2012.00911
详细信息
    通讯作者:

    刘松涛,海军大连舰艇学院信息与通信工程系副教授.大连理工大学信息与通信工程博士后流动站在站博士后.2000年获得海军航空工程学院航空雷达专业学士学位,并分别于2003年和2006年获得该校信号与信息处理专业硕士和博士学位.主要研究方向为图像处理,成像制导,光电对抗.

The Basic Principle and Its New Advances of Image Segmentation Methods Based on Graph Cuts

  • 摘要: 鉴于图割的理论意义和实际应用价值,系统综述了基于图割的图像分割方法. 首先,深入分析了基于图割的图像分割方法的基本原理,主要从定性和定量角度剖析了图割与能量函数最小化之间的关系, 然后,概括了基于图割的图像分割方法的基本步骤,包括能量函数的设计、图的构造和最小割/最大流方法, 其次,系统梳理和评述了基于图割的图像分割方法的国内外研究现状,最后,指出了基于图割的图像分割方法的发展方向.
  • [1] Pal N R, Pal S K. A review on image segmentation techniques. Pattern Recognition, 1993, 26(9): 1277-1294[2] Veksler O. Efficient Graph-based Energy Minimization Methods in Computer Vision [Ph.D. dissertation], Cornell University, USA, 1999[3] Bhandarkar S M, Zhang H. A comparison of stochastic optimization techniques for image segmentation. International Journal of Intelligent Systems, 2000, 15(5): 441-476[4] Wang J S, Swendsen R H. Cluster Monte Carlo algorithms. Physica A: Statistical Mechanics and Its Applications, 1990, 167(3): 565-578[5] Tu Z W, Zhu S C. Image segmentation by data-driven Markov chain Conte Carlo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 657-673[6] Barbu A, Zhu S C. Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1239-1253[7] Martelli A. An application of heuristic search methods to edge and contour detection. Communications of the ACM, 1976, 19(2): 73-83[8] Asano T, Chen D, Katoh N, Tokuyama T. Efficient algorithms for optimization-based image segmentation. International Journal of Computational Geometry and Applications, 2001, 11(2): 145-166[9] Mortensen E, Morse B, Barrett W, Udupa J. Adaptive boundary detection using “live-wire” two-dimensional dynamic programming. In: Proceedings of the Computers in Cardiology. Durham, USA: IEEE, 1992. 635-638[10] Cheng D C, Jiang X. Detections of arterial wall in sonographic artery images using dual dynamic programming. IEEE Transactions on Information Technology in Biomedicine, 2008, 12(6): 792-799[11] Ghanem B, Ahuja N. Dinkelbach NCUT: an efficient framework for solving normalized cuts problems with priors and convex constraints. International Journal of Computer Vision, 2010, 89(1): 40-55[12] Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222-1239[13] Zhao H K, Chan T, Merriman B, Osher S. A variational level sets approach to multiphase motion. Journal of Computational Physics, 1996, 127(1): 179-195[14] Caselles V, Catte T, Coll T, Dibos F. A geometric model for active contours in image processing. Numerische Mathematik, 1993, 66(1): 1-31[15] Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision, 1997, 22(1): 61-79[16] Mumford D, Shah J. Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-685[17] Chan T, Vese L. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2): 266-277[18] Paragios N, Deriche R. Geodesic active regions and level set methods for motion estimation and tracking. Computer Vision and Image Understanding, 2005, 97(3): 259-282[19] Besag J. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Series B, 1986, 48(3): 259-302[20] Stuart G, Donald G. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-741[21] Besag J. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 1974, 36(2): 192-236[22] Kolmogorov V, Zabin R. What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 147-159[23] Boykov Y, Jolly M P. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: Proceedings of the 8th IEEE International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001. 105-112[24] Boykov Y, Veksler O. Graph cuts in vision and graphics: theories and applications. Handbook of Mathematical Models in Computer Vision. New York: Springer, 2006. 79-96[25] Cherkassky B V, Goldberg A V. On implementing the push-relabel method for the maximum flow problem. Algorithmica, 1997, 19(4): 390-410[26] Goldberg A V, Tarjan R E. A new approach to the maximum-flow problem. Journal of the ACM, 1988, 35(4): 921-940[27] Ford L, Fulkerson D. Flows in Networks. Princeton: Princeton University Press, 1962[28] Dinic E A. Algorithm for solution of a problem of maximum flow in networks with power estimation. Soviet Mathematics-Doklady, 1970, 11(5): 1277-1280[29] Greig D, Porteous B, Seheult A. Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society, Series B, 1989, 51(2): 271-279[30] Boykov Y, Jolly M P. Interactive organ segmentation using graph cuts. In: Proceedings of the 3rd International Conference on Medical Image Computing and Computer-Assisted Intervention. Pittsburgh, USA: Springer, 2000. 276-286[31] Blake A, Rother C, Brown M, Perez P, Torr P. Interactive image segmentation using an adaptive GMMRF model. In: Proceedings of the 8th European Conference on Computer Vision. Prague, Czech Republic: Springer, 2004. 428-441[32] Rother C, Kologorov V, Blake A. “GrabCut”: interactive foreground extraction using iterated graph cuts. In: Proceedings of the ACM SIGGRAPH Conference. Los Angeles, USA: ACM, 2004. 309-314[33] Lempitsky V, Kohli P, Rother C, Sharp T. Image segmentation with a bounding box prior. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 277-284[34] Li Y, Sun J, Tang C K, Shum H Y. Lazy snapping. In: Proceedings of the ACM SIGGRAPH Conference. Los Angeles, USA: ACM, 2004. 303-308[35] Bai X, Sapiro G. A geodesic framework for fast interactive image and video segmentation and matting. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8[36] Price B L, Morse B, Cohen S. Geodesic graph cut for interactive image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 3161-3168[37] Das P, Veksler O, Zavadsky V, Boykov Y. Semiautomatic segmentation with compact shape prior. Image and Vision Computing, 2009, 27(1-2): 206-219[38] Bioucas-Dias J, Valadao G. Phase unwrapping via graph cuts. IEEE Transactions on Image Processing, 2007, 16(3): 698-709[39] Suga A, Fukuda K, Takiguchi T, Ariki Y. Object recognition and segmentation using SIFT and graph cuts. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1-4[40] Tang Z, Miao Z J, Wan Y L, Li J. Automatic foreground extraction for images and videos. In: Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 2993-2996[41] Russell C, Restif C, Metaxas D, Torr P. Using the Pn. Potts model with learning methods to segment live cell images. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8[42] Malcolm J, Rathi Y, Tannenbaum A. A graph cut approach to image segmentation in tensor space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Minnesota, USA: IEEE, 2007. 1-8[43] Malcolm J, Rathi Y, Tannenbaum A. Graph cut segmentation with nonlinear shape priors. In: Proceedings of the IEEE International Conference on Image Processing. San Antonio, USA: IEEE, 2007. 365-368[44] Veksler O. Star shape prior for graph-cut image segmentation. In: Proceedings of the 10th European Conference on Computer Vision. Marseille, France: Springer, 2008. 454-467[45] Wang H, Zhang H. Adaptive shape prior in graph cut segmentation. In: Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 3029-3032[46] Liu X Q, Veksler O, Samarabandu J. Order preserving moves for graph-cut-based optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1182-1196[47] Nowozin S, Lampert C H. Global connectivity potentials for random field models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 818-825[48] Candemir S, Akgul Y S. Adaptive regularization parameter for graph cut segmentation. In: Proceedings of the 7th International Conference on Image Analysis and Recognition. Povoa de Varzim, Portugal: Springer, 2010. 117-126[49] Rao J, Abugharbieh R, Hamarneh G. Adaptive regularization for image segmentation using local image curvature cues. In: Proceedings of the 11th European Conference on Computer Vision. Crete, Greece: Springer, 2010. 651-665[50] Le T H, Jung S W, Choi K S, Ko S J. Image segmentation based on modified graph-cut algorithm. Electronics Letters, 2010, 46(16): 1121-1122[51] Komodakis N, Tziritas G. Approximate labeling via graph cuts based on linear programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1436-1453[52] Alahari K, Kohli P, Torr P H S. Dynamic hybrid algorithms for MAP inference in discrete MRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1846-1857[53] Lempitsky V, Rother C, Roth S, Blake A. Fusion moves for Markov random field optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1392-1405[54] Veksler O. Multi-label moves for MRFs with truncated convex priors. In: Proceedings of the 7th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition. Bonn, German: Springer, 2009. 1-13[55] Feng W, Jia J Y, Liu Z Q. Self-validated labeling of Markov random fields for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1871-1887[56] Kolmogorov V, Rother C. Minimizing nonsubmodular functions with graph cuts --- a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(7): 1274-1279[57] Ishikawa H. Higher-order clique reduction in binary graph cut. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 2993-3000[58] Ishikawa H. Transformation of general binary MRF minimization to the first-order case. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(6): 1234-1249[59] Ishikawa H. Higher-order gradient descent by fusion-move graph cut. In: Proceedings of the 20th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 568-574[60] Ning J F, Zhang L, Zhang D, Wu C K. Interactive image segmentation by maximal similarity based region merging. Pattern Recognition, 2010, 43(2): 445-456[61] Alper A, Stefano S. Motion segmentation with occlusions on the superpixel graph. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 727-734[62] Lombaert H, Sun Y, Grady L, Xu C Y. A multilevel banded graph cuts method for fast image segmentation. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 259-265[63] Strandmark P, Kahl F. Parallel and distributed graph cuts by dual decomposition. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 2085-2092[64] Kohli P, Torr P H S. Dynamic graph cuts for efficient inference in markov random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(12): 2079-2088[65] Juan O, Boykov Y. Active graph cuts. In: Proceedings of the IEEE Conputer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 1023-1029[66] Huang Y C, Liu Q S, Metaxas D. Video object segmentation by hypergraph cut. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1738-1745[67] Chung C Y, Chen H H. Video object extraction via MRF-based contour tracking. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(1): 149-155[68] Wang T H, Guillemaut J Y, Collomosse J. Multi-label propagation for coherent video segmentation and artistic stylization. In: Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 3005-3008[69] Tao Wen-Bing, Jin Hai. A new image thresholding method based on graph spectral theory. Chinese Journal of Computers, 2007, 30(1): 110-119(陶文兵, 金海. 一种新的基于图谱理论的图像阈值分割方法. 计算机学报, 2007, 30(1): 110-119)[70] Ma Xiu-Li, Jiao Li-Cheng. SAR image segmentation based on watershed and spectral clustering. Journal of Infrared and Millimeter Waves, 2008, 27(6): 452-456(马秀丽, 焦李成. 基于分水岭---谱聚类的SAR图像分割. 红外与毫米波学报, 2008, 27(6): 452-456)[71] Yan Cheng-Xin, Sang Nong, Zhang Tian-Xu. Survey on graph theory based image segmentation technique. Computer Engineering and Applications, 2006, 42(5): 11-14(闫成新, 桑农, 张天序. 基于图论的图像分割研究进展. 计算机工程与应用, 2006, 42(5): 11-14)[72] Liu Jia, Wang Hong-Qi. A graph cuts based interactive image segmentation method. Journal of Electronics and Information Technology, 2008, 30(8): 1973-1976(刘嘉, 王宏琦. 一种基于图割的交互式图像分割方法. 电子与信息学报, 2008, 30(8): 1973-1976)[73] Han Shou-Dong, Zhao Yong, Tao Wen-Bing, Sang Nong. Gaussian super-pixel based fast image segmentation using graph cuts. Acta Automatica Sinica, 2011, 37(1): 11-20(韩守东, 赵勇, 陶文兵, 桑农. 基于高斯超像素的快速Graph Cuts图像分割方法. 自动化学报, 2011, 37(1): 11-20)[74] Han S D, Tao W B, Wu X L, Tai X C, Wang T J. Fast image segmentation based on multilevel banded closed-form method. Pattern Recognition Letters, 2010, 31(3): 216-225[75] Li Xiao-Bin, Tian Zheng, Liu Mi-Ge, Xu Hai-Xia. Weighted cut based image segmentation. Acta Electronica Sinica, 2008, 36(1): 76-80(李小斌, 田铮, 刘密歌, 徐海霞. 基于加权割的图像分割. 电子学报, 2008, 36(1): 76-80)[76] Li Yu-Chuan, Tian Zheng. Multiscale image segmentation based on graph weighted kernel K-means. Acta Optica Sinica, 2009, 29(10): 2762-2767(李昱川, 田铮. 基于图的加权核K均值的图像多尺度分割. 光学学报, 2009, 29(10): 2762-2767)[77] Zheng Jia-Ming, Chen Zhao-Jiong. Connectivity constrained graph-cut for fast interactive image segmentation. Journal of Computer-Aided Design and Computer Graphics, 2011, 23(3): 399-405(郑加明, 陈昭炯. 带连通性约束的快速交互式Graph-Cut算法. 计算机辅助设计与图形学学报, 2011, 23(3): 399-405)[78] Tang Peng, Gao Lin, Sheng Peng. A novel dynamic shape based infrared object subtraction method. Journal of Optoelectronics · Laser, 2009, 20(8): 1049-1052(唐鹏, 高琳, 盛鹏. 基于动态形状的红外目标提取算法. 光电子· 激光, 2009, 20(8): 1049-1052)[79] Liu Chen, Li Feng-Xia, Zhang Yan. An interactive object cutout algorithm based on graph-cut and generalized shape prior. Journal of Computer-Aided Design and Computer Graphics, 2009, 21(12): 1753-1760(刘陈, 李凤霞, 张艳. 基于图割与泛形信息的对象分割方法. 计算机辅助设计与图形学学报, 2009, 21(12): 1753-1760)[80] Li Shuan-Qiang, Feng Qian-Jin. Liver tumor segmentation using graph cuts based on CUDA. Chinese Journal of Biomedical Engineering, 2010, 29(5): 641-647(李拴强, 冯前进. 统一计算设备架构并行图割算法用于肝脏肿瘤图像分割. 中国生物医学工程学报, 2010, 29(5): 641-647)[81] Jiang T T, Jurie F, Schmid C. Learning shape prior models for object matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 848-855[82] Campbell N, Vogiatzis G, Hernandez C, Cipolla R. Automatic 3D object segmentation in multiple views using volumetric graph-cuts. In: Proceedings of the British Machine Vision Conference. Warwick, UK: BMVA, 2007. 530-539[83] Zhang Q, Ngan K N. Multi-view video based multiple objects segmentation using graph cut and spatiotemporal projections. Journal of Visual Communication and Image Representation, 2010, 21(5-6): 453-461[84] Tan S, Kakadiaris I A. Kernel active contour. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 521-528[85] El-Zehiry N, Sahoo P, Elmaghraby A. Combinatorial optimization of the piecewise constant Mumford-Shah functional with application to scalar/vector valued and volumetric image segmentation. Image and Vision Computing, 2011, 29(6): 365-381[86] Olsson C, Byrod M, Overgaard N C, Kahl F. Extending continuous cuts: anisotropic metrics and expansion moves. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 405-412
  • 加载中
计量
  • 文章访问数:  3979
  • HTML全文浏览量:  134
  • PDF下载量:  6999
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-18
  • 修回日期:  2011-07-25
  • 刊出日期:  2012-06-20

目录

    /

    返回文章
    返回