-
摘要: 数据流中概念漂移的检测是当前数据挖掘领域的重要研究分支, 近年来得到了广泛的关注. 本文提出了一种称为 M_ID4 的数据流挖掘算法. 它是在大容量数据流挖掘中, 通过尽量少的训练样本来实现概念漂移检测的快速方法. 利用多分类器综合技术, M_ID4 实现了数据流中概念漂移的增量式检测和挖掘. 实验结果表明, M_ID4 算法在处理数据流的概念漂移上表现出比已有同类算法更高的精确度和适应性.Abstract: Mining concept drifts from data streams is one of the most important fields in data mining. In this paper, a new mine algorithm called M_ID4 is proposed, which aims at quickly detecting drifted concepts from a large volume of data stream by using a small training data set. M_ID4 uses ensemble multi-classifiers to mine concept changes from the data streams, and its every classifier in the ensemble is an improved ID4 algorithm with an incremental way. The experimental results show that M_ID4 algorithm is of higher accuracy and better adaptability to quick drifted concepts than the popular algorithms.
-
Key words:
- Data mining /
- data stream /
- concept drift
计量
- 文章访问数: 2704
- HTML全文浏览量: 80
- PDF下载量: 1849
- 被引次数: 0