2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于极大似然准则和最大期望算法的自适应UKF 算法

王璐 李光春 乔相伟 王兆龙 马涛

王璐, 李光春, 乔相伟, 王兆龙, 马涛. 基于极大似然准则和最大期望算法的自适应UKF 算法. 自动化学报, 2012, 38(7): 1200-1210. doi: 10.3724/SP.J.1004.2012.01200
引用本文: 王璐, 李光春, 乔相伟, 王兆龙, 马涛. 基于极大似然准则和最大期望算法的自适应UKF 算法. 自动化学报, 2012, 38(7): 1200-1210. doi: 10.3724/SP.J.1004.2012.01200
WANG Lu, LI Guang-Chun, QIAO Xiang-Wei, WANG Zhao-Long, MA Tao. An Adaptive UKF Algorithm Based on Maximum Likelihood Principle and Expectation Maximization Algorithm. ACTA AUTOMATICA SINICA, 2012, 38(7): 1200-1210. doi: 10.3724/SP.J.1004.2012.01200
Citation: WANG Lu, LI Guang-Chun, QIAO Xiang-Wei, WANG Zhao-Long, MA Tao. An Adaptive UKF Algorithm Based on Maximum Likelihood Principle and Expectation Maximization Algorithm. ACTA AUTOMATICA SINICA, 2012, 38(7): 1200-1210. doi: 10.3724/SP.J.1004.2012.01200

基于极大似然准则和最大期望算法的自适应UKF 算法

doi: 10.3724/SP.J.1004.2012.01200
详细信息
    通讯作者:

    王璐

An Adaptive UKF Algorithm Based on Maximum Likelihood Principle and Expectation Maximization Algorithm

  • 摘要: 针对噪声先验统计特性未知情况下的非线性系统状态估计问题,提出了基于极大似然准则和 最大期望算法的自适应无迹卡尔曼滤波(Unscented Kalman filter, UKF) 算法.利用极大似然准则构造含有噪声统计特性的对数似然函数,通 过最大期望算法将噪声估计问题转化为对数似然函数数学期望极大化问题,最终得到带次优递 推噪声统计估计器的自适应UKF算法.仿真分析表明,与传统UKF算法相比,提出的自适应UKF算法 有效克服了传统UKF算法在系统噪声统计特性未知情况下滤波精度下降的问题,并实现了系统噪 声统计特性的在线估计.
  • [1] Norgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear systems. Automatica, 2000, 36(11): 1627-1638[2] Bolviken E, Acklam P J, Christophersen N, Stordal J M. Monte Carlo filters for non-linear state estimation. Automatica, 2001, 37(2): 177-183[3] Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for filtering nonlinear systems. In: Proceedings of the American Control Conference. Washington, USA: IEEE, 1995. 1628-1632[4] Karasalo M, Hu X M. An optimization approach to adaptive Kalman filtering. Automatica, 2011, 47(8): 1785-1793[5] Han X J, Li X. An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation. Remote Sensing of Environment, 2008, 112(4): 1434-1449[6] Xiong K, Zhang H Y, Chan C W. Performance evaluation of UKF-based nonlinear filtering. Automatica, 2006, 42(2): 261-270[7] Zhou Dong-Hua, Xi Yu-Geng, Zhang Zhong-Jun. A suboptimal multiple fading extended Kalman filter. Acta Automatica Sinica, 1991, 17(6): 689-695 (周东华, 席裕庚, 张钟俊. 一种带多重次优渐消因子的扩展卡尔曼滤波器. 自动化学报, 1991, 17(6): 689-695)[8] Xia Qi-Jun, Sun You-Xian, Zhou Chun-Hui. An optimal adaptive algorithm for fading Kalman filter and its application. Acta Automatica Sinica, 1990, 16(3): 210-216 (夏启军, 孙优贤, 周春晖. 渐消卡尔曼滤波器的最佳自适应算法及其应用. 自动化学报, 1990, 16(3): 210-216)[9] Lesmes L A, Jeon S T, Lu Z L, Dosher B A. Bayesian adaptive estimation of threshold versus contrast external noise functions: the quick TvC method. Vision Research, 2006, 46(19): 3160-3176[10] Parthasarathy S, Balaji C. Estimation of parameters in multi-mode heat transfer problems using Bayesian inference---effect of noise and a priori. International Journal of Heat and Mass Transfer, 2008, 51(9-10): 2313-2334[11] Yoon M, Ivrissimtzis I, Lee S Y. Variational Bayesian noise estimation of point sets. Computers and Graphics, 2009, 33(3): 226-234[12] Sage A P, Husa G W. Adaptive filtering with unknown prior statistics. In: Proceedings of Joint Automatic Control Conference. Boulder, USA: ASME, 1969. 760-769[13] Deng Zi-Li, Wang Jian-Guo. Adaptive extended Kalman filtering for nonlinear systems. Acta Automatica Sinica, 1987, 13(5): 375-379 (邓自立, 王建国. 非线性系统的自适应推广的Kalman滤波. 自动化学报, 1987, 13(5): 375-379)[14] Zhao Lin, Wang Xiao-Xu, Sun Ming, Ding Ji-Cheng, Yan Chao. Adaptive UKF filtering algorithm based on maximum a posterior estimation and exponential weighting. Acta Automatica Sinica, 2010, 36(7): 1007-1019 (赵琳, 王小旭, 孙明, 丁继承, 闫超. 基于极大后验估计和指数加权的自适应UKF滤波算法. 自动化学报, 2010, 36(7): 1007-1019)[15] Sun Yao, Zhang Qiang, Wan Lei. Small autonomous underwater vehicle navigation system based on adaptive UKF algorithm. Acta Automatica Sinica, 2010, 37(3): 342-353 (孙尧, 张强, 万磊. 基于自适应UKF算法的小型水下机器人导航系统. 自动化学报, 2010, 37(3): 342-353)[16] Shi Yong, Han Chong-Zhao. Adaptive UKF method with applications to target tracking. Acta Automatica Sinica, 2011, 37(6): 755-759 (石勇, 韩崇昭. 自适应UKF算法在目标跟踪中的应用. 自动化学报, 2011, 37(6): 755-759)[17] Costa M, Alpuim T. Parameter estimation of state space models for univariate observations. Journal of Statistical Planning and Inference, 2010, 140(7): 1889-1902[18] Saatci E, Akan A. Respiratory parameter estimation in non-invasive ventilation based on generalized Gaussian noise models. Signal Processing, 2010, 90(2): 480-489[19] \AAkesson B M, Jorgensen J B, Poulsen N K, Jorgensen S B. A generalized autocovariance least-squares method for Kalman filter tuning. Journal of Process Control, 2008, 18(7-8): 769-779[20] Odelson B J, Rajamani M R, Rawlings J B. A new autocovariance least-squares method for estimating noise covariances. Automatica, 2006, 42(2): 303-308[21] Mehra R. Approaches to adaptive filtering. IEEE Transactions on Automatic Control, 1972, 17(5): 693-698[22] Myers K, Tapley B. Adaptive sequential estimation with unknown noise statistics. IEEE Transactions on Automatic Control, 1976, 21(4): 520-523[23] Den\oeux T. Maximum likelihood estimation from fuzzy data using the EM algorithm. Fuzzy Sets and Systems, 2011, 183(1): 72-91[24] Bavdekar V A, Deshpande A P, Patwardhan S C. Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter. Journal of Process Control, 2011, 21(4): 585-601
  • 加载中
计量
  • 文章访问数:  2904
  • HTML全文浏览量:  120
  • PDF下载量:  1457
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-29
  • 修回日期:  2012-02-27
  • 刊出日期:  2012-07-20

目录

    /

    返回文章
    返回