[1]
|
Norgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear systems. Automatica, 2000, 36(11): 1627-1638[2] Bolviken E, Acklam P J, Christophersen N, Stordal J M. Monte Carlo filters for non-linear state estimation. Automatica, 2001, 37(2): 177-183[3] Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for filtering nonlinear systems. In: Proceedings of the American Control Conference. Washington, USA: IEEE, 1995. 1628-1632[4] Karasalo M, Hu X M. An optimization approach to adaptive Kalman filtering. Automatica, 2011, 47(8): 1785-1793[5] Han X J, Li X. An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation. Remote Sensing of Environment, 2008, 112(4): 1434-1449[6] Xiong K, Zhang H Y, Chan C W. Performance evaluation of UKF-based nonlinear filtering. Automatica, 2006, 42(2): 261-270[7] Zhou Dong-Hua, Xi Yu-Geng, Zhang Zhong-Jun. A suboptimal multiple fading extended Kalman filter. Acta Automatica Sinica, 1991, 17(6): 689-695 (周东华, 席裕庚, 张钟俊. 一种带多重次优渐消因子的扩展卡尔曼滤波器. 自动化学报, 1991, 17(6): 689-695)[8] Xia Qi-Jun, Sun You-Xian, Zhou Chun-Hui. An optimal adaptive algorithm for fading Kalman filter and its application. Acta Automatica Sinica, 1990, 16(3): 210-216 (夏启军, 孙优贤, 周春晖. 渐消卡尔曼滤波器的最佳自适应算法及其应用. 自动化学报, 1990, 16(3): 210-216)[9] Lesmes L A, Jeon S T, Lu Z L, Dosher B A. Bayesian adaptive estimation of threshold versus contrast external noise functions: the quick TvC method. Vision Research, 2006, 46(19): 3160-3176[10] Parthasarathy S, Balaji C. Estimation of parameters in multi-mode heat transfer problems using Bayesian inference---effect of noise and a priori. International Journal of Heat and Mass Transfer, 2008, 51(9-10): 2313-2334[11] Yoon M, Ivrissimtzis I, Lee S Y. Variational Bayesian noise estimation of point sets. Computers and Graphics, 2009, 33(3): 226-234[12] Sage A P, Husa G W. Adaptive filtering with unknown prior statistics. In: Proceedings of Joint Automatic Control Conference. Boulder, USA: ASME, 1969. 760-769[13] Deng Zi-Li, Wang Jian-Guo. Adaptive extended Kalman filtering for nonlinear systems. Acta Automatica Sinica, 1987, 13(5): 375-379 (邓自立, 王建国. 非线性系统的自适应推广的Kalman滤波. 自动化学报, 1987, 13(5): 375-379)[14] Zhao Lin, Wang Xiao-Xu, Sun Ming, Ding Ji-Cheng, Yan Chao. Adaptive UKF filtering algorithm based on maximum a posterior estimation and exponential weighting. Acta Automatica Sinica, 2010, 36(7): 1007-1019 (赵琳, 王小旭, 孙明, 丁继承, 闫超. 基于极大后验估计和指数加权的自适应UKF滤波算法. 自动化学报, 2010, 36(7): 1007-1019)[15] Sun Yao, Zhang Qiang, Wan Lei. Small autonomous underwater vehicle navigation system based on adaptive UKF algorithm. Acta Automatica Sinica, 2010, 37(3): 342-353 (孙尧, 张强, 万磊. 基于自适应UKF算法的小型水下机器人导航系统. 自动化学报, 2010, 37(3): 342-353)[16] Shi Yong, Han Chong-Zhao. Adaptive UKF method with applications to target tracking. Acta Automatica Sinica, 2011, 37(6): 755-759 (石勇, 韩崇昭. 自适应UKF算法在目标跟踪中的应用. 自动化学报, 2011, 37(6): 755-759)[17] Costa M, Alpuim T. Parameter estimation of state space models for univariate observations. Journal of Statistical Planning and Inference, 2010, 140(7): 1889-1902[18] Saatci E, Akan A. Respiratory parameter estimation in non-invasive ventilation based on generalized Gaussian noise models. Signal Processing, 2010, 90(2): 480-489[19] \AAkesson B M, Jorgensen J B, Poulsen N K, Jorgensen S B. A generalized autocovariance least-squares method for Kalman filter tuning. Journal of Process Control, 2008, 18(7-8): 769-779[20] Odelson B J, Rajamani M R, Rawlings J B. A new autocovariance least-squares method for estimating noise covariances. Automatica, 2006, 42(2): 303-308[21] Mehra R. Approaches to adaptive filtering. IEEE Transactions on Automatic Control, 1972, 17(5): 693-698[22] Myers K, Tapley B. Adaptive sequential estimation with unknown noise statistics. IEEE Transactions on Automatic Control, 1976, 21(4): 520-523[23] Den\oeux T. Maximum likelihood estimation from fuzzy data using the EM algorithm. Fuzzy Sets and Systems, 2011, 183(1): 72-91[24] Bavdekar V A, Deshpande A P, Patwardhan S C. Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter. Journal of Process Control, 2011, 21(4): 585-601
|