2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于区间数聚类的无线传感器网络定位方法

彭宇 罗清华 王丹 彭喜元

彭宇, 罗清华, 王丹, 彭喜元. 基于区间数聚类的无线传感器网络定位方法. 自动化学报, 2012, 38(7): 1190-1199. doi: 10.3724/SP.J.1004.2012.01190
引用本文: 彭宇, 罗清华, 王丹, 彭喜元. 基于区间数聚类的无线传感器网络定位方法. 自动化学报, 2012, 38(7): 1190-1199. doi: 10.3724/SP.J.1004.2012.01190
PENG Yu, LUO Qing-Hua, WANG Dan, PENG Xi-Yuan. WSN Localization Method Using Interval Data Clustering. ACTA AUTOMATICA SINICA, 2012, 38(7): 1190-1199. doi: 10.3724/SP.J.1004.2012.01190
Citation: PENG Yu, LUO Qing-Hua, WANG Dan, PENG Xi-Yuan. WSN Localization Method Using Interval Data Clustering. ACTA AUTOMATICA SINICA, 2012, 38(7): 1190-1199. doi: 10.3724/SP.J.1004.2012.01190

基于区间数聚类的无线传感器网络定位方法

doi: 10.3724/SP.J.1004.2012.01190
详细信息
    通讯作者:

    罗清华

WSN Localization Method Using Interval Data Clustering

  • 摘要: 在基于接收信号强度指示(Received signal strength indicator, RSSI) 测距的无线传感器网络(Wireless sensor network, WSN)定位方法应用过程中, 信号强度与对应通信距离的对数成线性关系的假设在实际无线通信环境下几乎不能满足, 从而导致定位误差较大. 针对此问题, 本文首先利用区间数表示方法结合实际定位环境中RSSI数据的统计信息表示RSSI的分布区域, 并采用区间数聚类方法实现距离估计, 以减小由于RSSI值不确定性引起的距离估计误差, 然后利用这些距离估计值实现基于测距的WSN定位方法. 采用三种实际通信环境下RSSI测量数据完成的定位实验结果表明, 本文提出的基于区间数聚类RSSI-通信距离(RSSI-D)估计的定位方法可有效地提高定位精度.
  • [1] Hightower J, Borriello G. Location systems for ubiquitous computing. IEEE Computer, 2001, 34(8): 57-66[2] Liu Y H, Yang Z, Wang X P, Jian L R. Location, localization, and localizability. Journal of Computer Science and Technology, 2010, 25(2): 274-297[3] Wang G Q, Fidan B. Localization Algorithms and Strategies for Wireless Sensor Networks. New York: Information Science Reference, 2009. 55-87[4] Li Zhe-Tao, Li Ren-Fa, Wei Ye-Hua. Coordinated algorithm for time synchronization and distance measurement in wireless sensor networks. Journal of Computer Research and Development, 2010, 47(4): 638-644 (李哲涛, 李仁发, 魏叶华. 无线传感器网络中时间同步与测距协同算法. 计算机研究与发展, 2010, 47(4): 638-644)[5] Priyantha N B, Miu A K L, Balakrishnan H, Teller S. The cricket compass for context-aware mobile applications. In: Proceedings of 7th ACM Conference on Mobile Computing and Networking (MBICOM 2001). Rome, Italy: IEEE, 2001. 1-14[6] Zhang Y C, Fang Z Y, Li R X, Hu W P. The design and implementation of a RSSI-based localization system. In: Proceedings of 2009 Wireless Communications, Networking and Mobile Computing (Wicom 2009). Beijing, China: IEEE, 2009. 3536-3539[7] Meguerdichian S, Slijepcevic S, Karayan V, Potkonjak M. Localized algorithms in wireless ad-hoc networks: Location discovery and sensor exposure. In: Proceedings of the 2nd ACM International Symp on Mobile Ad Hoc Networking and Computing. Long Beach, ACM Pres: IEEE, 2010. 106-116[8] Chen H Y, Ping D, Xu Y J, Li X W. A robust location algorithm with biased extended Kalman filtering of TDOA data for wireless sensor networks. In: Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing 2005. Chengdu, China: IEEE, 2005. 883-886[9] Chen H Y, Ping D, Xu Y J, Li X W. A novel localization scheme based on RSS data for wireless sensor networks. In: Proceedings of Advanced Web and Network Technologies, and Applications. Harbin, China, 2006. 315-320[10] Ren H L, Meng M Q H. Power adaptive localization algorithm for wireless sensor networks using particle filter. IEEE Transactions on Vehicular Technology, 2009, 58(5): 2498-2508[11] Song Yu, Sun Fu-Chun, Li Qing-Ling. Mobile robot Monte Carlo localization based on improved unscented particle filter. Acta Automatica Sinica, 2010, 36(6): 852-857 (宋宇, 孙富春, 李庆铃. 移动机器人的改进无迹粒子滤波蒙特卡罗定位算法. 自动化学报, 2010, 36(6): 852-857)[12] Zhu Ji-Hua, Zheng Nan-Ning, Yuan Ze-Jian, Zhang Qiang. A SLAM algorithm based on central different particle filter. Acta Automatica Sinica, 2010, 36(2): 249-257(祝继华, 郑南宁, 袁泽剑, 张强. 基于中心差分粒子滤波的SLAM算法. 自动化学报, 2010, 36(2): 249-257)[13] Peng Yu, Luo Qing-Hua, Peng Xi-Yuan. UIDK-means: a multi-dimensional uncertain measurement data clustering algorithm. Chinese Journal of Scientific Instrument, 2011, 32(6): 1201-1207 (彭宇, 罗清华, 彭喜元. UIDK-means: 多维不确定性测量数据聚类算法. 仪器仪表学报, 2011, 32(6): 1201-1207)[14] Li Z, Trapp W, Zhang Y Y, Nath B. Robust statistical methods for securing wireless localization in sensor networks. In: Proceedings of the 4th International Symposium on Information Processing Sensor Networks. Washington, USA: IEEE Computer Society Press, 2005. 91-98.[15] Fang Zhen, Zhao Zhan, Guo Peng, Zhang Y G. Analysis of distance measurement based on RSSI. Chinese Journal of Sensors and Actuators, 2007, 20(11): 2526-2530 (方震, 赵湛, 郭鹏, 张玉国. 基于RSSI测距分析. 传感技术学报, 2007, 20(11): 2526-2530)[16] Zhu Jian, Zhao Hai, Sun Pei-Gang, Bi Yuan-Guo. Equilateral triangle localization algorithm based on average RSSI. Journal of Northeastern University (Natural Science), 2007, 28(8): 1094-1097 (朱剑, 赵海, 孙佩刚, 毕远国. 基于RSSI均值的等边三角形定位算法. 东北大学学报, 2007, 28(8): 1094-1097)[17] Zhao Fang, Ma Yan, Luo Hai-Yong, Lin Quan. Robust estimator for indoor node localization. Journal on Communications, 2008, 29(11): 113-120 (赵方, 马严, 罗海勇, 林权. 基于顽健估计的室内节点定位算法. 通信学报, 2008, 29(11): 113-120)[18] Lv Rui, Yang Xian-Hui. Reduction of wireless sensor node localization errors. Journal of Tsinghua University (Science and Technology), 2008, 48(10): 1839-1843 (吕睿, 阳宪惠. 减少无线传感器网络节点定位误差的方法. 清华大学学报 (自然科学版), 2008, 48(10): 1839-1843)[19] Kumar P, Reddy L, Varma S. Distance measurement and error estimation scheme for RSSI based localization in wireless sensor networks. In: Proceedings of the 2009 IEEE Conference on Wireless Communication and Sensor Networks (WCSN). Allahabad, Indian: IEEE, 2009. 80-83[20] Huang Y C, Lin P J, Huang Y J, Ker M D. CORDIC implementation of RSSI localization method. In: Proceedings of the 2010 Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics. Shanghai, China: IEEE, 2010. 295-298[21] Yan X Y, Qian H Y. RSSI based positioning error ranging removal of mixed. In: Proceedings of the 2010 International Conference on Consumer Electronics, Communications and Networks (CECNet). Xianning, China: IEEE, 2011. 3498-3501[22] Lin Quan, Zhao Fang, Luo Hai-Yong, Kang Yi-Mei. A wireless localization algorithm based on spectral decomposition of the graph laplacian. Acta Automatica Sinica, 2011, 37(3): 316-321 (林权, 赵方, 罗海勇, 康一梅. 基于图谱分解的无线定位算法. 自动化学报, 2011, 37(3): 316-321)[23] Moore R E. Error in Digital Computation (Volume 1). New York: John Wiley and Sons Inc., 1965. 32-53[24] Goldoni E, Savioli A, Risi M, Gamba P. Experimental analysis of RSSI-based indoor localization with IEEE 802.15.4. In: Proceedings of European Wireless Conference (EW 2010). Lucca, Italy: IEEE, 2010. 71-77[25] Bezdek J C, Ehrlich R, Full W. FCM: the fuzzy c-means clustering algorithm. Computers and Geosciences, 1984, 10(2-3): 191-203[26] Wu C F J. On the convergence properties of the EM algorithm. Annals of Statistics, 1983, 11(1): 95-103[27] Ding Zhen-Liang. Error Theory and Process of Data. Harbin: Harbin Institute of Technology Publisher, 2002. 86-87 (丁振良. 误差理论与数据处理. 哈尔滨: 哈尔滨工业大学出版社, 2002. 86-87)[28] Dirk H, Volk P B, Lehner W, Diittmann R, Utzny C. Error-aware density-based clustering of imprecise measurement values. In: Proceedings of the 23rd IEEE International Conference on Data Mining (ICDM 2007). Omaha, NE: IEEE, 2007. 471-476
  • 加载中
计量
  • 文章访问数:  2003
  • HTML全文浏览量:  77
  • PDF下载量:  1001
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-01
  • 修回日期:  2012-02-08
  • 刊出日期:  2012-07-20

目录

    /

    返回文章
    返回