• 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空−海−潜跨域无人平台协同的海上目标探测追踪策略

田泽兴 闫敬 高麒媛 杨睍 关新平

田泽兴, 闫敬, 高麒媛, 杨睍, 关新平. 基于空−海−潜跨域无人平台协同的海上目标探测追踪策略. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250438
引用本文: 田泽兴, 闫敬, 高麒媛, 杨睍, 关新平. 基于空−海−潜跨域无人平台协同的海上目标探测追踪策略. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250438
Tian Ze-Xing, Yan Jing, Gao Qi-Yuan, Yang Xian, Guan Xin-Ping. Maritime target detection and tracking strategy based on the collaboration of air-sea-submarine cross-domain unmanned platform. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250438
Citation: Tian Ze-Xing, Yan Jing, Gao Qi-Yuan, Yang Xian, Guan Xin-Ping. Maritime target detection and tracking strategy based on the collaboration of air-sea-submarine cross-domain unmanned platform. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250438

基于空−海−潜跨域无人平台协同的海上目标探测追踪策略

doi: 10.16383/j.aas.c250438 cstr: 32138.14.j.aas.c250438
基金项目: 国家自然科学基金(62222314, U25A20472), 河北省燕赵青年科学家项目(2024203047), 河北省自然科学基金(F2022203001, F2024203072, F2025501051), 河北省教育厅基金(JCZX2025027) 资助
详细信息
    作者简介:

    田泽兴:燕山大学电气工程学院博士研究生. 2018年获得郑州大学自动化专业学士学位. 主要研究方向为刚性拓扑优化, 水下编队控制. E-mail: zxtian@stumail.ysu.edu.cn

    闫敬:燕山大学电气工程学院教授. 2014年获得燕山大学控制科学与工程博士学位. 主要研究方向为水声传感器网络, 水下机器人控制. 本文通信作者. E-mail: jyan@ysu.edu.cn

    高麒媛:燕山大学电气工程学院硕士研究生, 2023年获得燕山大学自动化专业学士学位, 主要研究方向为海空跨域平台目标追踪控制. E-mail: gaoqiyuan@stumail.ysu.edu.cn

    杨睍:燕山大学电气工程学院教授, 2016年获得燕山大学控制科学与工程博士学位, 主要研究方向为网络化遥操作系统, 水下网络物理系统和非线性控制. E-mail: xyang@ysu.edu.cn

    关新平:上海交通大学自动化与感知学院教授. 1999年获得哈尔滨工业大学控制科学与工程博士学位. 主要研究方向为工业信息物理系统, 无线组网及应用, 水下传感器网络. E-mail: xpguan@sjtu.edu.cn

Maritime Target Detection and Tracking Strategy Based on the Collaboration of Air-sea-submarine Cross-domain Unmanned Platform

Funds: Supported by National Natural Science Foundation of China (62222314, U25A20472), YanZhao Young Scientist Project of Hebei Province (F2024203047), National Natural Science Foundation of Hebei Province (F2022203001, F2024203072, F2025501051), and Education Department Foundation of Hebei Province (JCZX2025027)
More Information
    Author Bio:

    TIAN Ze-Xing Ph.D. candidate at the School of Electrical Engineering, Yanshan University. He received his bachelor degree in Automation from Zhengzhou University in 2018. His research interests include rigid topology optimization and underwater formation control

    YAN Jing   Professor at the School of Electrical Engineering, Yanshan University. He received his Ph.D. degree in Control Theory and Control Engineering from Yanshan University in 2014. His research interests include underwater acoustic sensor networks and the control of underwater vehicles. Corresponding author of this paper

    GAO Qi-Yuan Master student at the School of Electrical Engineering, Yanshan University. She received her bachelor degree in Automation from Yanshan University in 2023. Her main research interest is target tracking control for sea-air cross-domain platforms

    YANG Xian Professor at the School of Electrical Engineering, Yanshan University. She received her Ph.D. degree in Control Science and Engineering from Yanshan University in 2016. Her research interests include networked teleoperation systems, underwater cyber physical systems, and nonlinear control

    GUAN Xin-Ping Professor at the School of Automation and Intelligent Sensing, Shanghai Jiaotong University. He received his Ph.D degree in Control Theory and Control Engineering from Harbin Institute of Technology in 1999. His research interests include industrial cyber-physical systems, wireless networking and applications, and underwater sensor networks

  • 摘要: 提出一种基于空−海−潜跨域无人平台协同的海上目标探测追踪策略. 首先, 构建无人机−水面艇−潜器协同的海上跨域无人系统; 进一步, 针对海上目标的高机动性以及无人平台自身约束, 采用测度理论解析无人机−水面艇−潜器最佳探测编队队形, 实现目标探测概率最大化; 当探测到目标后, 设计基于逆强化学习的无人机−水面艇−潜器编队控制器, 实现障碍物环境下水面/水下目标的可靠有效追踪. 最后, 通过仿真与实验验证了所提方法的有效性. 结果表明, 所提探测模式可以实现有限时间内移动目标探测概率最大化, 同时所提逆强化学习编队控制器可以在保持队形稳定的基础上, 结合动态避障策略, 实现复杂环境下跨域无人平台安全协同追踪.
  • 图  1  无人机–水面艇–潜器协同探测追踪

    Fig.  1  Collaborative detection and tracking of UAV-USV-AUV

    图  2  线集、带集与凸集的描述

    Fig.  2  Description of line set, strip set, and convex set

    图  3  无人机–水面艇目标探测模式

    Fig.  3  Target detection mode of UAV-USV

    图  4  水面艇–潜器水下目标探测模式

    Fig.  4  Underwater target detection mode of USV-AUV

    图  5  基于逆强化学习的编队追踪控制器

    Fig.  5  IRL-based formation tracking controller

    图  6  应对模型不确定性与环境变化的策略

    Fig.  6  Strategy to handle model uncertainty and environment changes

    图  7  无人机–水面艇对水面目标探测结果

    Fig.  7  Detection results of surface targets by UAV-USV

    图  8  水面艇–潜器对水下目标探测

    Fig.  8  Detection results of underwater targets by USV-AUV

    图  9  基于逆强化学习的编队追踪控制器

    Fig.  9  IRL-based formation tracking controller

    图  10  无人机–水面艇–潜器目标探测模式对比

    Fig.  10  Comparison of target detection modes with UAV-USV-AUV

    图  11  无人机–水面艇–潜器编队追踪控制器对比

    Fig.  11  Comparison of tracking controllers for formation of UAV-USV-AUV

    图  12  湖中实验设置

    Fig.  12  Experimental setup in the lake

    图  13  湖中实验结果

    Fig.  13  Experimental results in the lake

    图  14  湖中对比实验结果

    Fig.  14  Comparison experiment results in the lake

  • [1] 闫敬, 关新平. 海上无人系统跨域集群发展现状及其关键技术. 自动化学报, 2025, 51(4): 744−761

    Yan Jing, Guan Xin-Ping. Development status and key techniques for cross-domain swarm of maritime unmanned systems. Acta Automatica Sinica, 2025, 51(4): 744−761
    [2] Cui S W, Wang Y, Wang S, Wang R, Wang W, Tan M. Real-time perception and positioning for creature picking of an underwater vehicle. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3783−3792 doi: 10.1109/TVT.2020.2973656
    [3] Wang Q, Zhang Y X, He B. Intelligent marine survey: Lightweight multi-scale attention adaptive segmentation framework for underwater target detection of AUV. IEEE Transactions on Automation Science and Engineering, 2025, 22(1): 1913−1927
    [4] Kim J. Surface target tracking using towed array sonars with direct and bottom bounce underwater sound signals. IEEE Transactions on Signal and Information Processing over Networks, 2022, 8(1): 997−1007
    [5] Chen X L, Huang F H, Pan Y J, Chen Z. Bearing-only-based cooperative target enclosing control for multiple uncrewed surface vehicles with unknown dynamics and sideslip. IEEE Journal of Oceanic Engineering, 2025, 50(2): 1015−1029 doi: 10.1109/JOE.2024.3478311
    [6] Tang P, Zhang Y. LiteFlex-YOLO: A lightweight small target detection network for maritime unmanned aerial vehicles. Pervasive and Mobile Computing, 2025, 111(1): 1−22
    [7] Ke C, Chen H F. Cooperative path planning for air-sea heterogeneous unmanned vehicles using search-and-tracking mission. Ocean Engineering, 2022, 262(1): 1−13
    [8] McCammon S, Santos G M D, Frantz M, Welch T P, Best G, Shearman R K, et al. Ocean front detection and tracking using a team of heterogeneous marine vehicles. Journal of Field Robotics, 2021, 38(6): 854−881
    [9] Wu Y, Low K H, Lv C. Cooperative path planning for heterogeneous unmanned vehicles in a search-and-track mission aiming at an underwater target. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6782−6787 doi: 10.1109/TVT.2020.2991983
    [10] Yan J, Lin J S, Yang X, Chen C L, Guan X P. Cooperation detection and tracking of underwater target via aerial-surface-underwater vehicles. IEEE Transactions on Automatic Control, 2025, 70(2): 1068−1083 doi: 10.1109/TAC.2024.3447976
    [11] Jiang X W, Jiao R R, Li B, Zhang X H, Yan H C. Finite-time consensus of second-order multiagent systems with input saturation via hybrid sliding-mode control. IEEE Transactions on Automation Science and Engineering, 2025, 22(1): 14623−14632
    [12] Jin D Y, Ahn C K, Xiang Z R. Adaptive distributed fuzzy control for prescribed-time formation of multiple autonomous aerial vehicles. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 1589−1599 doi: 10.1109/TAES.2024.3456756
    [13] Sun Z B, Wu B L, Wang D W, Chen J Y. Event-triggered model predictive control of spacecraft formation. IEEE Transactions on Automation Science and Engineering, 2025, 22(1): 7696−7711
    [14] Wei W, Wang J J, Fang Z R, Chen J R, Ren Y, Dong Y H. 3U: Joint design of UAV-USV-UUV networks for cooperative target hunting. IEEE Transactions on Vehicular Technology, 2023, 72(3): 4085−4090 doi: 10.1109/TVT.2022.3220856
    [15] Zhao W B, Liu H, Valavanis K P, Lewis F L. Fault-tolerant formation control for heterogeneous vehicles via reinforcement learning. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2796−2806 doi: 10.1109/TAES.2021.3139260
    [16] Xue W Q, Kolaric P, Fan J L, Lian B S, Chai T Y, Lewis F L. Inverse reinforcement learning in tracking control based on inverse optimal control. IEEE Transactions on Cybernetics, 2022, 52(10): 10570−10581
    [17] Lian B S, Kartal Y, Lewis F L, Mikulski D G, Hudas G R, Wan Y, et al. Anomaly detection and correction of optimizing autonomous systems with inverse reinforcement learning. IEEE Transactions on Cybernetics, 2023, 53(7): 4555−4566 doi: 10.1109/TCYB.2022.3213526
    [18] Tian Z X, Yan J, Yang X, Chen C L, Guan X P. Optimally persistent formation of AUVs with model uncertainty and unknown interaction topology. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(9): 13993−14010
    [19] Zhao W B, Liu H, Wan Y, Lin Z L. Data-driven formation control for multiple heterogeneous vehicles in air-ground coordination. IEEE Transactions on Control of Network Systems, 2022, 9(4): 1851−1862 doi: 10.1109/TCNS.2022.3181254
    [20] Liu X, Yan H C, Zhou W X, Wang N, Wang Y Y. Event-triggered optimal tracking control for underactuated surface vessels via neural reinforcement learning. IEEE Transactions on Industrial Informatics, 2024, 20(11): 12837−12847 doi: 10.1109/TII.2024.3424573
    [21] Wu H J, Yang Z H, Cao J N, and Lai L Q. TRiForm: Formation control for underwater sensor networks with measurement errors. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7679−7691 doi: 10.1109/TVT.2020.2989363
    [22] Cui R X, Yang C G, Li Y, Sharma S. Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(6): 1019−1029
    [23] Liu B, Dousse O, Nain P, Towsley D. Dynamic coverage of mobile sensor networks. IEEE Transactions on Parallel and Distributed systems, 2012, 24(2): 301−311
    [24] Santaló L A. Integral Geometry and Geometric Probability. New York: Cambridge University Press, 2004.
    [25] Cao W Q, Yan J, Yang X, Luo X Y, Guan X P. Communication-aware formation control of AUVs with model uncertainty and fading channel via integral reinforcement learning. IEEE/CAA Journal of Automatica Sinica, 2023, 10(1): 159−176
    [26] Video of the Experimental Results[Online], available: https://v.youku.com/v_show/id_XNjQ5OTE4OTc4OA==.html?spm=a2hkn.playlist.myhome.d_0&playMode=pugv, Nov. 16, 2025.
  • 加载中
计量
  • 文章访问数:  6
  • HTML全文浏览量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-31
  • 录用日期:  2025-11-06
  • 网络出版日期:  2025-12-03

目录

    /

    返回文章
    返回