• 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

知识−数据−模型驱动的低空动目标轨迹融合预测方法

周同乐 刘子仪 陈谋

周同乐, 刘子仪, 陈谋. 知识−数据−模型驱动的低空动目标轨迹融合预测方法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250429
引用本文: 周同乐, 刘子仪, 陈谋. 知识−数据−模型驱动的低空动目标轨迹融合预测方法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250429
Zhou Tong-Le, Liu Zi-Yi, Chen Mou. Knowledge-data-model-driven trajectory fusion prediction method for low-altitude moving target. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250429
Citation: Zhou Tong-Le, Liu Zi-Yi, Chen Mou. Knowledge-data-model-driven trajectory fusion prediction method for low-altitude moving target. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250429

知识−数据−模型驱动的低空动目标轨迹融合预测方法

doi: 10.16383/j.aas.c250429 cstr: 32138.14.j.aas.c250429
基金项目: 国家自然科学基金(62203217, U23B2036), 江苏省基础研究计划自然科学基金(BK20220885)资助
详细信息
    作者简介:

    周同乐:南京航空航天大学自动化学院讲师. 主要研究方向为智能指挥与控制及其在无人系统中的应用. E-mail: zhoutongle@nuaa.edu.cn

    刘子仪:南京航空航天大学自动化学院硕士生. 主要研究方向为数据融合, 目标轨迹预测. E-mail: l1762629272@126.com

    陈谋:南京航空航天大学自动化学院教授. 主要研究方向为非线性系统控制, 飞行控制和火力控制. 本文通信作者. E-mail: chenmou@nuaa.edu.cn

Knowledge-data-model-driven Trajectory Fusion Prediction Method for Low-altitude Moving Target

Funds: Supported by National Natural Science Foundation of China (62203217, U23B2036) and Jiangsu Province Basic Research Program Natural Science Foundation (BK20220885)
More Information
    Author Bio:

    ZHOU Tong-Le Lecturer at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. His research interest covers intelligent command and control, and their applications in unmanned systems

    LIU Zi-Yi Master student at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. His research interest covers data fusion and target trajectory prediction

    CHEN Mou Professor at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. His research interest covers nonlinear system control, flight control, and fire control. Corresponding author of this paper

  • 摘要: 针对低空环境下动目标轨迹预测问题, 提出一种知识—数据—模型驱动的动目标轨迹融合预测框架. 基于低空飞行器运动特征构建飞行知识混合专家模型, 通过将多源传感器数据输入至各飞行知识专家模块, 实现目标机动模态的精细化识别, 并使用Mamba模型提取时空关联特征; 设计权值自适应调节机制, 利用注意力机制动态融合多源感知数据, 解决传感器时空异步问题; 采用门控循环单元建模长期时序依赖关系, 根据目标历史飞行数据生成初步预测轨迹; 基于低空目标运动学方程构建物理信息神经网络, 通过动态权衡数据驱动损失与物理约束损失, 矫正数据驱动偏差, 确保预测轨迹满足运动学约束并有效抑制多步预测误差累积. 数值仿真及实验验证结果表明, 所提出的知识—数据—模型驱动的动目标轨迹融合预测方法, 能够有效预测低空目标飞行轨迹.
  • 图  1  低空环境下动目标轨迹融合预测流程

    Fig.  1  Trajectory fusion prediction flowchart for moving targets in low-altitude environments

    图  2  知识-数据-模型驱动的动目标轨迹融合预测框架

    Fig.  2  Knowledge-data-model-driven trajectory fusion prediction framework for moving target

    图  3  基于MoE-Mamba的目标时空特征提取结构图

    Fig.  3  Structure diagram of target spatiotemporal feature extraction based on MoE-Mamba

    图  4  基于注意力机制多传感器数据融合结构图

    Fig.  4  Structure diagram of multi-sensor data fusion based on attention mechanism

    图  5  基于GRU的目标轨迹学习预测结构图

    Fig.  5  Structure diagram of GRU-based target trajectory learning and prediction

    图  6  基于PINN的目标轨迹特征重构结构图

    Fig.  6  Structure diagram of target trajectory feature reconstruction based on PINN

    图  7  预测模型的训练总损失收敛曲线

    Fig.  7  Convergence curve of total training loss for the prediction model

    图  8  预测模型的训练分损失收敛曲线

    Fig.  8  Convergence curve of component training loss for the prediction model

    图  9  目标位置的MAE和RMSE曲线

    Fig.  9  MAE and RMSE curves of target position

    图  10  目标速度的MAE和RMSE曲线

    Fig.  10  MAE and RMSE curves of target velocity

    图  11  目标位置和目标速度的MAE和RMSE对比曲线

    Fig.  11  Comparative curves of MAE and RMSE for target position and velocity

    图  12  场景1特征和目标飞行轨迹

    Fig.  12  Characteristics and target flight trajectory of scenario 1

    图  13  场景1轨迹预测结果

    Fig.  13  Trajectory prediction results for scenario 1

    图  14  场景1下遮挡区域轨迹预测误差曲线

    Fig.  14  Trajectory prediction error curves in occluded region under scenario 2

    图  15  场景2特征和目标飞行轨迹

    Fig.  15  Characteristics and target flight trajectory of scenario 2

    图  16  场景2轨迹预测结果

    Fig.  16  Trajectory prediction results for scenario 2

    图  18  场景2下障碍物2遮挡区域轨迹预测误差曲线

    Fig.  18  Trajectory prediction error curve in occluded region of obstacle 2 under scenario 2

    图  17  场景2下障碍物1遮挡区域轨迹预测误差曲线

    Fig.  17  Trajectory prediction error curves in occluded region of obstacle 1 under scenario 2

    表  1  训练参数

    Table  1  Training parameters

    参数名称 取值
    模型输入维度 6
    门控网络隐藏单元 12
    Mamba隐藏单元 12
    Mamba因果卷积核 2
    GRU隐藏单元 12
    模型输出维度 6
    学习率 0.001
    下载: 导出CSV

    表  2  目标位置和目标速度的预测结果对比

    Table  2  Comparison of prediction results for target position and velocity

    方法 目标位置误差(m) 目标速度误差(m/s)
    MAE RMSE MAE RMSE
    D-GRU 4.071 5.945 0.849 1.279
    A-GRU 3.540 5.601 0.725 1.200
    MMA-GRU 2.035 3.790 0.485 0.890
    本文方法 1.119 1.466 0.290 0.474
    下载: 导出CSV
  • [1] 陈林, 缪志强, 王祥科, 陈谋, 段海滨, 王耀南. 自主飞行器技术及其在低空经济中的应用综述. 机器人, 2021, 47(3): 470−495 doi: 10.13973/j.cnki.robot.250073

    Chen Lin, Miao Zhi-Qiang, Wang Xiang-Ke, Chen Mou, Duan Hai-Bin, Wang Yao-Nan. Overview on autonomous aircraft technology and its application to low-altitude economy. Robot, 2021, 47(3): 470−495 doi: 10.13973/j.cnki.robot.250073
    [2] 崔亚奇, 熊伟, 何友. 不确定航迹自适应预测模型. 航空学报, 2019, 40(5): Article No. 322557

    Cui Ya-Qi, Xiong Wei, He You. Adaptive forecast model for uncertain track. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): Article No. 322557
    [3] 韩云祥, 汤新民, 韩松臣. 基于混杂系统理论的无冲突4D航迹预测. 西南交通大学学报, 2012, 47(6): 1069−1074

    Han Yun-Xiang, Tang Xin-Min, Han Song-Chen. Conflict-free 4D trajectory prediction based on hybrid system theory. Journal of Southwest Jiaotong University, 2012, 47(6): 1069−1074
    [4] 翟岱亮, 雷虎民, 李炯, 刘滔. 基于自适应IMM的高超声速飞行器轨迹预测. 航空学报, 2016, 37(11): 3466−3475

    Zhai Dai-Liang, Lei Hu-Min, Li Jiong, Liu Tao. Trajectory prediction of hypersonic vehicle based on adaptive IMM. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3466−3475
    [5] 徐正凤, 曾维理, 羊钊. 航空器轨迹预测技术研究综述. 计算机工程与应用, 2021, 57(12): 65−74

    Xu Zheng-Feng, Zeng Wei-Li, Yang Zhao. Survey of civil aircraft trajectory prediction. Computer Engineering and Applications, 2021, 57(12): 65−74
    [6] Takeichi N. Adaptive prediction of flight time uncertainty for ground-based 4D trajectory management. Transportation Research Part C: Emerging Technologies, 2018, 95: 335−345 doi: 10.1016/j.trc.2018.07.028
    [7] 陈宇燊, 白成超, 颜鹏, 郑红星, 郭继峰. 基于意图推理的城市环境下低空飞行目标轨迹预测方法. 机器人, 2025, 47(3): 459−469 doi: 10.13973/j.cnki.robot.250078

    Chen Yu-Shen, Bai Cheng-Chao, Yan Peng, Zheng Hong-Xing, Guo Ji-Feng. A trajectory prediction method for low-altitude flight targets in urban environments based on intent inference. Robot, 2025, 47(3): 459−469 doi: 10.13973/j.cnki.robot.250078
    [8] Zhang J D, Shi Z Y, Zhang A L, Yang Q M, Shi G Q, Wu Y. UAV trajectory prediction based on flight state recognition. IEEE Transactions on Aerospace and Electronic System, 2024, 60(3): 2629−2641 doi: 10.1109/TAES.2023.3303854
    [9] Wu Y, Yu H Y, Du J P, Liu B, Yu W T. An aircraft trajectory prediction method based on trajectory clustering and a spatiotemporal feature network. Electronics, 2022, 11(21): Article No. 3453 doi: 10.3390/electronics11213453
    [10] Luo A F, Luo Y X, Liu H, Du W C, Wu X P, Chen H, et al. An improved Transformer-based model for long-term 4D trajectory prediction in civil aviation. IET Intelligent Transport Systems, 2024, 18(9): 1588−1598 doi: 10.1049/itr2.12530
    [11] Wang Z H, Kong F H, Feng S, Wang M, Yang X C, Zhao H, et al. Is Mamba effective for time series forecasting?. Neurocomputing, 2025, 619: Article No. 129178 doi: 10.1016/j.neucom.2024.129178
    [12] Zhou S Y, Yang L J, Liu X L, Wang L P. Learning short-term spatial-temporal dependency for UAV 2-D trajectory forecasting. IEEE Sensors Journal, 2024, 24(22): 38256−38269 doi: 10.1109/JSEN.2024.3466516
    [13] Yang S R, Liu L P, Chen B W, Cheng S Y, Shi Z W, Zou Z X. GooDFlight: goal-oriented diffusion model for flight trajectory prediction. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(3): 7447−7465 doi: 10.1109/TAES.2025.3536436
    [14] 陈兴琳, 任艳丽, 姜博文, 王平. 基于TCN模型的航空器四维航迹预测. 现代电子技术, 2025, 48(17): 1−6

    Chen Xing-Lin, Ren Yan-Li, Jiang Bo-Wen, Wang Ping. Aircraft four dimensional trajectory prediction based on TCN model. Modern Electronic Technique, 2025, 48(17): 1−6
    [15] Fan Y Q, Tan Y J, Wu L W, Ye H, Lyu Z W. Global and local interattribute relationships-based graph convolutional network for flight trajectory prediction. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(3): 2642−2657 doi: 10.1109/TAES.2024.3357668
    [16] Tan M H, Shen H, Xi K, Chai B. Trajectory prediction of flying vehicles based on deep learning methods. Applied Intelligence, 2023, 53(11): 13621−13642 doi: 10.1007/s10489-022-04098-8
    [17] Zhang Z, Guo D Y, Zhou S Z, Zhang J W, Lin Y. Flight trajectory prediction enabled by time-frequency wavelet transform. Nature Communications, 2023, 14(1): Article No. 5258 doi: 10.1038/s41467-023-40903-9
    [18] Yuksel S E, Wilson J N, Gader P D. Twenty years of mixture of experts. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(8): 1177−1193 doi: 10.1109/TNNLS.2012.2200299
    [19] Cai W L, Jiang J Y, Wang F, Tang J, Kim S, Huang J Y. A survey on mixture of experts in large language models. IEEE Transactions on Knowledge and Data Engineering, 2025, 37(7): 3896−3915
    [20] Gu A, Dao T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv: 2312.00752, 2024
    [21] Zhou T L, Chen M, Zou J. Reinforcement learning based data fusion method for multi-sensors. IEEE/CAA Journal of Automatica Sinica, 2020, 7(6): 1489−1497 doi: 10.1109/JAS.2020.1003180
    [22] Lu S Y, Liu M Z, Yin L R, Yin Z T, Liu X, Zheng W F. The multi-modal fusion in visual question answering: A review of attention mechanisms. PeerJ Computer Science, 2023, 9: Article No. e1400 doi: 10.7717/peerj-cs.1400
    [23] 张宗腾, 张琳, 汪文峰, 滕飞, 张搏. 一种基于双向GRU的UAV飞行轨迹预测方法. 电光与控制, 2022, 29(3): 11−15

    Zhang Zong-Teng, Zhang Lin, Wang Wen-Feng, Teng Fei, Zhang Bo. A method for UAV flight trajectory prediction based on bidirectional GRU. Electronics Optics and Control, 2022, 29(3): 11−15
    [24] 张忠豪, 董方敏, 胡枫, 吴义熔, 孙水发. 基于残差的门控循环单元. 自动化学报, 2022, 48(12): 3067−3074

    Zhang Zhong-Hao, Dong Fang-Min, Hu Feng, Wu Yi-Rong, Sun Shui-Fa. Residual based gated recurrent unit. Acta Automatica Sinica, 2022, 48(12): 3067−3074
    [25] Harsha M, Singh G, Kumar V, Buduru A B, Biswas S K. Tracking an untracked space debris after an inelastic collision using physics informed neural network. Scientific Reports, 2024, 14(1): Article No. 3350 doi: 10.1038/s41598-024-51897-9
  • 加载中
计量
  • 文章访问数:  21
  • HTML全文浏览量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-30
  • 录用日期:  2025-10-17
  • 网络出版日期:  2025-11-27

目录

    /

    返回文章
    返回