• 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市空中交通系统最优规模评估与调度

郭戈 郑智远 张忍永康

郭戈, 郑智远, 张忍永康. 城市空中交通系统最优规模评估与调度. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250396
引用本文: 郭戈, 郑智远, 张忍永康. 城市空中交通系统最优规模评估与调度. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250396
Guo Ge, Zheng Zhi-Yuan, Zhang Ren-Yong-Kang. Optimal scale evaluation and scheduling in urban air mobility system. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250396
Citation: Guo Ge, Zheng Zhi-Yuan, Zhang Ren-Yong-Kang. Optimal scale evaluation and scheduling in urban air mobility system. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250396

城市空中交通系统最优规模评估与调度

doi: 10.16383/j.aas.c250396 cstr: 32138.14.j.aas.c250396
基金项目: 国家自然科学基金(62573104,62173079,U1808205),河北省自然科学基金(F2025501051),国家资助博士后研究人员计划(GZC20251204),中央高校基本科研业务费(N2423049)资助
详细信息
    作者简介:

    郭戈:东北大学教授. 主要研究方向为智能交通系统, 交通大数据分析, 人工智能应用, 信息物理系统. 本文通信作者. E-mail: geguo@yeah.net

    郑智远:东北大学博士研究生. 主要研究方向为智能交通系统, 按需出行系统. E-mail: 2290098@stu.neu.edu.cn

    张忍永康:东北大学博士后. 主要研究方向为分布式优化与控制、智能交通系统. E-mail: 2010278@stu.neu.edu.cn

Optimal Scale Evaluation and Scheduling in Urban Air Mobility System

Funds: Supported by National Natural Science Foundation of China (62573104,62173079,U1808205), Hebei Natural Science Foundation (F2025501051), Postdoctoral Fellowship Program of CPSF (GZC20251204), and Fundamental Research Funds for the Central Universities (N2423049)
More Information
    Author Bio:

    GUO Ge Professor of Northeastern University. His research interest covers intelligent transportation systems, traffic big data analysis, artificial intelligence applications, and information physical systems. Corresponding author of this paper

    ZHENG Zhi-Yuan Ph. D. candidate at Northeastern University. His primary research interests include intelligent transportation systems, and on-demand transportation systems

    ZHANG Ren-Yong-Kang a Postdoctoral Fellow at Northeastern University. His primary research interests include distributed optimization and control, and intelligent transportation systems

  • 摘要: 针对城市空中交通系统,提出一种优化方法以同时确定满足乘客需求的最小系统规模和最佳系统再平衡策略.研究构建了流体模型与多服务器M/M/s排队模型的联合框架,描述乘客、飞行器与电池在站点间迁移、换电及充电过程.在该模型框架下对飞行器和电池数量的适定性进行了证明,并给出了系统供需均衡时的必要条件.在此基础上,通过线性规划求解系统供需均衡下的再平衡分配率与最小机队规模,并计算最优充电站位置、电池数量及电池运输车数量.数值仿真分析了影响系统规模的因素,实例验证证明了所提再平衡方法的有效性.
  • 图  1  城市空中交通系统模型

    Fig.  1  Model of the urban air mobility system

    图  2  飞行器需求与分布

    Fig.  2  Demand and distribution of drones

    图  3  所需最小充电桩数量

    Fig.  3  Minimum required number of charging piles

    图  4  电池数量需求与分布

    Fig.  4  Demand and distribution of battery

    图  5  所需最小运输车队规模

    Fig.  5  Minimum required number of trucks

    图  6  飞行器起降站的系统示意图

    Fig.  6  System schematic diagram

    图  7  飞行器需求与分布

    Fig.  7  Demand and distribution of drones

    图  8  最大等待顾客总数量随机队规模的变化

    Fig.  8  Variation in maximum waiting customers with drone count

    图  9  再平衡飞行器数量随机队规模的变化

    Fig.  9  Variation of number of rebalancing drones with fleet size

    图  10  策略2下42个站点的顾客等待情况

    Fig.  10  Customer waiting situation at 42 sites under Strategy 2

    图  11  策略3下42个站点的顾客等待情况

    Fig.  11  Customer waiting situation at 42 sites under Strategy 3

    图  12  不同调度策略下42个站点的最大等待顾客数量

    Fig.  12  The maximum number of waiting customers at 42 stations under different scheduling strategies

    图  13  策略2下机队的分布

    Fig.  13  Aircraft distribution under Strategy 2

    图  14  策略3下机队的分布

    Fig.  14  Aircraft distribution under Strategy 3

    表  1  载人飞行器系统符号说明

    Table  1  Symbol description of the passenger eVTOL system

    符号定义
    $ \lambda_i $乘客在站点$ i $请求服务的速率
    $ \lambda_i^{'} $飞行器在站点$ i $请求换电的速率
    $ \lambda_{cs} $充电站接收低电量电池的速率
    $ p_{ij} $站点$ i $中的乘客将要前往站点$ j $的比例
    $ \mu_i $站点$ i $中飞行器分配给乘客的速率
    $ \mu_{cs}^{'} $充电站中每个充电桩的服务率
    $ s_{cs} $充电站中充电桩的数量
    $ D_{cs} $电池停留在充电站中的平均时间
    $ T_{ij} $站点$ i $到站点$ j $的飞行耗时
    $ v_{ic} $运输车的行驶速度
    $ o_{cs}^i $充电站中的电池发往站点$ i $的比例
    $ c_{i} $当前时刻站点$ i $中的乘客数
    $ e_{i} $当前时刻站点$ i $中的飞行器数
    $ b_{i} $当前时刻站点$ i $中的电池数
    $ c_j^{i} $时刻$ T_{ij} $之前站点$ j $中的乘客数
    $ e_j^{i} $时刻$ T_{ij} $之前站点$ j $中的飞行器数
    $ b_{ji}^{k} $时刻$ (T_{ij}+D_{cs}) $之前站点$ j $中的电池数
    下载: 导出CSV
  • [1] Shahriar Ahmed S, Fountas G, Lurkin V, Anastasopoulos P, Zhang Y, Bierlaire M, et al. The state of urban air mobility research: An assessment of challenges and opportunities. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(2): 1375−1394 doi: 10.1109/TITS.2024.3511453
    [2] Cohen A P, Shaheen S A, Farrar E M. Urban air mobility: History, ecosystem, market potential, and challenges. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 6074−6087 doi: 10.1109/TITS.2021.3082767
    [3] Rajendran S, Srinivas S. Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities. Transportation Research Part E: Logistics and Transportation Review, 2020, 143: Article No. 102090 doi: 10.1016/j.tre.2020.102090
    [4] Wang K, Qu X. Urban aerial mobility: Reshaping the future of urban transportation. The Innovation, 2023, 4(2): Article No. 100392 doi: 10.1016/j.xinn.2023.100392
    [5] Bulusu V, Onat E B, Sengupta R, Yedavalli P, Macfarlane J. A traffic demand analysis method for urban air Mmobility. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 6039−6047 doi: 10.1109/TITS.2021.3052229
    [6] Zhang J, Qin X, Zhang M. Multi-aircraft scheduling optimization in urban environments. Applied Mathematical Modelling, 2025, 145: Article No. 116118 doi: 10.1016/j.apm.2025.116118
    [7] Zhang H, Liu Z, Dong Y, Zhou H, Liu P, Chen J. A novel network equilibrium model integrating urban aerial mobility. Transportation Research Part A: Policy and Practice, 2024, 187: Article No. 104160 doi: 10.1016/j.tra.2024.104160
    [8] Shim J, Park J, Song N C, Jang J, Choi J Y, Lee G, et al. Real-time optimal route planning by deep reinforcement learning and validation with flight test. In: AIAA AVIATION 2023 FORUM. Amer Inst Aeronautics & Astronautics; 2023
    [9] He X, He F, Li L, Zhang L, Xiao G. A route network planning method for urban air delivery. Transportation Research Part E: Logistics and Transportation Review, 2022, 166: Article No. 102872 doi: 10.1016/j.tre.2022.102872
    [10] Tang H, Zhang Y, Mohmoodian V, Charkhgard H. Automated flight planning of high-density urban air mobility. Transportation Research Part C: Emerging Technologies, 2021, 131: Article No. 103324 doi: 10.1016/j.trc.2021.103324
    [11] 钟罡, 华骏鸣, 杜森, 刘玉璞, 刘皞, 张洪海. 基于复杂网络的城市低空飞行计划优化调度. 航空学报, 2025, 46(11): Article No. 531479

    Zhong G, Hua J, Du S, Liu Y, Liu H, Zhang H. Urban low-altitude flight plan optimal scheduling based on complex network. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): Article No. 531479
    [12] Espejo-Díaz J A, Alfonso-Lizarazo E, Montoya-Torres J R. A heuristic approach for scheduling advanced air mobility aircraft at vertiports. Applied Mathematical Modelling, 2023, 123: 871−890 doi: 10.1016/j.apm.2023.07.009
    [13] Li S, Zhang T, Xiao Y, Li D. On-demand ridesharing based on dynamic scheduling in urban air mobility. Transportation Research Part C: Emerging Technologies, 2025, 175: Article No. 105111 doi: 10.1016/j.trc.2025.105111
    [14] Boddupalli S S, Garrow L A, German B J, Newman J P. Mode choice modeling for an electric vertical takeoff and landing (eVTOL) air taxi commuting service. Transportation Research Part A: Policy and Practice, 2024, 181: Article No. 104000
    [15] Ilahi A, Belgiawan P F, Balac M, Axhausen K W. Understanding travel and mode choice with emerging modes: A pooled SP and RP model in Greater Jakarta, Indonesia. Transportation Research Part A: Policy and Practice, 2021, 150: 398−422 doi: 10.1016/j.tra.2021.06.023
    [16] Shon H, Lee J. An optimization framework for urban air mobility (UAM) planning and operations. Air Transport Management, 2025, 124: Article No. 102720 doi: 10.1016/j.jairtraman.2024.102720
    [17] Lv D, Zhang W, Wang K, Hao H, Yang Y. Urban aerial mobility for airport shuttle service. Transportation Research Part A: Policy and Practice, 2024, 188: Article No. 104202 doi: 10.1016/j.tra.2024.104202
    [18] Pei Z, Fang T, Weng K, Yi W. Urban On-demand delivery via autonomous aerial mobility: Formulation and exact algorithm. IEEE Transactions on Automation Science and Engineering, 2023, 20(3): 1675−1689
    [19] Kai W, Jacquillat A, Vaze V. Vertiport Planning for urban aerial mobility: An adaptive discretization approach. Manufacturing & Service Operations Management, 2022, 24(6): 3215−3235
    [20] Bennaceur M, Delmas R, Hamadi Y. Passenger-centric urban air mobility: fairness trade-offs and operational efficiency. Transportation Research Part C: Emerging Technologies, 2022, 136: Article No. 103519
    [21] Guo G, Xu T. Vehicle rebalancing with charging scheduling in one-way car-sharing systems. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 4342−4351 doi: 10.1109/TITS.2020.3043594
    [22] Pavone M, Smith S, Frazzoli E, Rus D. Robotic load balancing for mobility-on-demand systems. Robotics Research, 2012, 31: 839−854 doi: 10.1177/0278364912444766
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-18
  • 录用日期:  2025-10-23
  • 网络出版日期:  2025-11-13

目录

    /

    返回文章
    返回