2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速飞行器基于Tube的鲁棒模型预测跟踪控制

姚秀明 邢文龙 韩一睿

姚秀明, 邢文龙, 韩一睿. 高超声速飞行器基于Tube的鲁棒模型预测跟踪控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250279
引用本文: 姚秀明, 邢文龙, 韩一睿. 高超声速飞行器基于Tube的鲁棒模型预测跟踪控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250279
Yao Xiu-Ming, Xing Wen-Long, Han Yi-Rui. Tube-based robust model predictive tracking control for hypersonic flight vehicle. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250279
Citation: Yao Xiu-Ming, Xing Wen-Long, Han Yi-Rui. Tube-based robust model predictive tracking control for hypersonic flight vehicle. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250279

高超声速飞行器基于Tube的鲁棒模型预测跟踪控制

doi: 10.16383/j.aas.c250279 cstr: 32138.14.j.aas.c250279
基金项目: 国家自然科学基金(62273029)资助
详细信息
    作者简介:

    姚秀明:北京交通大学自动化与智能学院教授. 主要研究方向为抗干扰控制, 机器人系统, 机电控制系统和智能交通系统. 本文通信作者. E-mail: xmyao@bjtu.edu.cn

    邢文龙:北京交通大学自动化与智能学院硕士研究生. 主要研究方向为鲁棒模型预测控制, 抗干扰控制. E-mail: 23125136@bjtu.edu.cn

    韩一睿:北京交通大学自动化与智能学院硕士研究生. 主要研究方向为鲁棒模型预测控制, 抗干扰控制和磁悬浮列车控制. E-mail: 23125136@bjtu.edu.cn

Tube-based Robust Model Predictive Tracking Control for Hypersonic Flight Vehicle

Funds: Supported by National Natural Science Foundation of China (62273029)
More Information
    Author Bio:

    YAO Xiu-Ming Professor at the School of Automation and Intelligence, Beijing Jiaotong University. Her research interest covers anti-disturbance control, robotic systems, electromechanical control systems, and intelligent transportation systems. Corresponding author of this paper

    XING Wen-Long Master student at the School of Automation and Intelligence, Beijing Jiaotong University. His research interest covers robust model predictive control and anti-disturbance control

    HAN Yi-Rui Master student at the School of Automation and Intelligence, Beijing Jiaotong University. Her research interest covers robust model predictive control, anti-disturbance control, and maglev train control

  • 摘要: 针对高超声速飞行器(Hypersonic flight vehicle, HFV)在未知环境干扰与执行器故障下的跟踪控制问题, 提出一种基于Tube的复合鲁棒模型预测控制方法. 首先, 基于非线性动态逆方法将高超声速飞行器纵向运动模型输入/输出线性化, 并实现了高度与速度控制回路的解耦. 随后, 结合Tube不变集理论推导鲁棒收紧约束, 并显式集成HFV的控制输入及其增量约束, 设计一种复合鲁棒模型预测控制策略. 此外, 还研究了所提方法的递归可行性, 同时基于Lyapunov稳定性理论严格证明控制策略的闭环稳定性. 最后, 仿真实验验证了所提方法的有效性.
  • 图  1  参数不确定性下的跟踪效果

    Fig.  1  Tracking performance under parameter uncertainty

    图  4  参数不确定性下的控制量增量变化

    Fig.  4  Incremental changes in control variables under parameter uncertainty

    图  2  参数不确定性下的控制量变化

    Fig.  2  Changes in control variables under parameter uncertainty

    图  3  参数不确定性下的飞行器状态变化

    Fig.  3  Aircraft state changes under parameter uncertainty

    图  5  执行器故障下的跟踪效果

    Fig.  5  Tracking effects under actuator fault

    图  6  执行器故障下的控制量变化

    Fig.  6  Changes in control variables under actuator fault

    图  7  正弦干扰下的跟踪效果

    Fig.  7  Tracking effects under sinusoidal disturbance

    图  8  正弦干扰下的控制量变化

    Fig.  8  Changes in control variables under sinusoidal disturbance

  • [1] 张豪, 王鹏, 汤国建, 包为民. 高超声速变外形飞行器事件触发有限时间控制. 航空学报, 2023, 44(15): Article No. 528494

    Zhang Hao, Wang Peng, Tang Guo-Jian, Bao Wei-Min. Event-triggered fast finite time control for hypersonic morphing vehicles. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): Article No. 528494
    [2] Cao C Y, Li F B, Xie Q C, Liao Y X, Huang T W, Yang C H, et al. Integrated guidance and control of morphing flight vehicle via sliding-mode-based robust reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2025, 55(5): 3350−3362 doi: 10.1109/TSMC.2025.3540262
    [3] 郭雷, 王陈亮, 王雨, 朱玉凯, 乔建忠. 多源干扰下高超声速飞行器自主精细控制. 宇航学报, 2023, 44(4): 558−565

    Guo Lei, Wang Cheng-Liang, Wang Yu, Zhu Yu-Kai, Qiao Jian-Zhong. Autonomous refined control for hypersonic flight vehicles with multiple disturbances. Journal of Astronautics, 2023, 44(4): 558−565
    [4] Liang S, Xu B, Sun S S, Tao C G. Dynamic-command-limiting-based AOA constraint control of hypersonic flight vehicle. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(1): 1163−1174 doi: 10.1109/TAES.2024.3452051
    [5] Tang W Q, Long W K, Gao H Y. Model predictive control of hypersonic vehicles accommodating constraints. IET Control Theory & Applications, 2017, 11(15): 2599−2606
    [6] 张康康, 周彬, 蔡光斌, 侯明哲. 高超声速飞行器指定时间时变高增益反馈跟踪控制. 自动化学报, 2024, 50(6): 1151−1159

    Zhang Kang-Kang, Zhou Bin, Cai Guang-Bin, Hou Ming-Zhe. Prescribed-time tracking control of hypersonic vehicles by time-varying high-gain feedback. Acta Automatica Sinica, 2024, 50(6): 1151−1159
    [7] Zhao S W, Wang J C, Xu H T, Wang B H. Composite observer-based optimal attitude-tracking control with reinforcement learning for hypersonic vehicles. IEEE Transactions on Cybernetics, 2023, 53(2): 913−926 doi: 10.1109/TCYB.2022.3192871
    [8] Zhang H, Wang P, Tang G J, Bao W M. Fuzzy disturbance observer-based fixed-time attitude control for hypersonic morphing vehicles. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 6577−6593 doi: 10.1109/TAES.2024.3404911
    [9] 路遥. 一种非仿射高超声速飞行器输出反馈控制方法. 自动化学报, 2022, 48(6): 1530−1542

    Lu Yao. A method of output feedback control for non-affine hypersonic vehicles. Acta Automatica Sinica, 2022, 48(6): 1530−1542
    [10] Yuan Y, Wang Z, Guo L, Liu H P. Barrier Lyapunov functions-based adaptive fault tolerant control for flexible hypersonic flight vehicles with full state constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(9): 3391−3400 doi: 10.1109/TSMC.2018.2837378
    [11] Ding Y B, Yue X K, Li W B, Huang P X, Li N Y. Novel finite-time controller with improved auxiliary adaptive law for hypersonic vehicle subject to actuator constraints. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(3): 3402−3416 doi: 10.1109/TITS.2024.3522567
    [12] Ding H X, Xu B W, Yang W Q, Zhou Y F, Wu X Y. A robust control method for the trajectory tracking of hypersonic unmanned flight vehicles based on model predictive control. Drones, 2025, 9(3): Article No. 223 doi: 10.3390/drones9030223
    [13] Astudillo A, Gillis J, Diehl M, DecréW, Pipeleers G, Swevers J. Position and orientation tunnel-following NMPC of robot manipulators based on symbolic linearization in sequential convex Quadratic Programming. IEEE Robotics and Automation Letters, 2022, 7(2): 2867−2874 doi: 10.1109/LRA.2022.3142396
    [14] Cui P, Gao C S, An R M. Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles. Journal of Systems Engineering and Electronics, 2025, 36(3): 803−813 doi: 10.23919/JSEE.2025.000033
    [15] Dai P, Yan B B, Han T, Liu S X. Barrier lyapunov function based model predictive control of a morphing waverider with input saturation and full-state constraints. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 3071−3081 doi: 10.1109/TAES.2022.3222294
    [16] 曹承钰, 李繁飙, 廖宇新, 殷泽阳, 桂卫华. 高超声速变外形飞行器建模与固定时间预设性能控制. 自动化学报, 2024, 50(3): 486−504

    Cao Cheng-Yu, Li Fan-Biao, Liao Yu-Xin, Yin Ze-Yang, Gui Wei-Hua. Modeling and fixed-time prescribed performance control for hypersonic morphing vehicle. Acta Automatica Sinica, 2024, 50(3): 486−504
    [17] Mayne D Q, Rawlings J B, Rao C V, Scokaert P O M. Constrained model predictive control: Stability and optimality. Automatica, 2000, 36(6): 789−814 doi: 10.1016/S0005-1098(99)00214-9
    [18] Zhao J, Chen M. Dynamic event-triggered robust feedback model predictive tracking control of air-breathing hypersonic vehicle based on disturbance preview. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 3291−3305 doi: 10.1109/TAES.2024.3492159
    [19] Mirshams M, Khosrojerdi M. Attitude control of an underactuated spacecraft using tube-based MPC approach. Aerospace Science and Technology, 2016, 48: 140−145 doi: 10.1016/j.ast.2015.09.018
    [20] Ma Y, Cai Y L. Scheduled composite off-line output feedback model predictive control for a constrained hypersonic vehicle using polyhedral invariant sets. Journal of Aerospace Engineering, 2018, 31(4): Article No. 115
    [21] Hu X X, Karimi H R, Wu L G, Guo Y. Model predictive control-based non-linear fault tolerant control for air-breathing hypersonic vehicles. IET Control Theory & Applications, 2014, 8(13): 1147−1153
    [22] Shi L, Wang X S, Cheng Y H. Safe reinforcement learning-based robust approximate optimal control for hypersonic flight vehicles. IEEE Transactions on Vehicular Technology, 2023, 72(9): 11401−11414 doi: 10.1109/TVT.2023.3264243
    [23] 刘晓东. 针对一类非线性系统的多变量线性扩张状态观测器及其收敛性分析. 自动化学报, 2016, 42(11): 1758−1764

    Liu Xiao-Dong. Multi-variable linear extended state observer for a class of nonlinear systems and its convergence analysis. Acta Automatica Sinica, 2016, 42(11): 1758−1764
    [24] Bartusiak E R, Jacobs M A, Chan M W, Comer M L, Delp E J. Predicting hypersonic glide vehicle behavior with stochastic grammars. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(1): 1208−1223 doi: 10.1109/TAES.2023.3335895
    [25] 孙爽, 董华龙, 赵自庆, 李文彭, 王宇峰. 基于增量非线性动态逆的倾转旋翼eVTOL单旋翼失效控制. 推进技术, 2025, 46(9): Article No. 202410044

    Sun Shuang, Dong Hua-Long, Zhao Zi-Qing, Li Wen-Peng, Wang Yu-Feng. Single rotor failure control of tilt-rotor eVTOL based on incremental nonlinear dynamic inversion. Journal of Propulsion Technology, 2025, 46(9): Article No. 202410044
    [26] 闫斌斌, 林泽淮, 刘双喜, 闫杰. 基于动态逆控制的高超声速飞行器飞/发一体化控制方法研究. 西北工业大学学报, 2023, 41(5): 878−886 doi: 10.1051/jnwpu/20234150878

    Yan Bin-Bin, Lin Ze-Huai, Liu Shuang-Xi, Yan Jie. Research on integrated aircraft-engine control method of hypersonic vehicle based on dynamic inversion control. Journal of Northwestern Polytechnical University, 2023, 41(5): 878−886 doi: 10.1051/jnwpu/20234150878
    [27] Yang Y, Yao X M, Xu H Z. Disturbance-observer-based event-triggered model predictive control of nonlinear input-affine systems. Automatica, 2024, 161: Article No. 111504 doi: 10.1016/j.automatica.2023.111504
    [28] Mu C X, Ni Z, Sun C Y, He H B. Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 584−598 doi: 10.1109/TNNLS.2016.2516948
    [29] Li Y J, Liang S, Xu B, Hou M S. Predefined-time asymptotic tracking control for hypersonic flight vehicles with input quantization and faults. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2826−2837 doi: 10.1109/TAES.2021.3068442
    [30] Yu X, Li P, Zhang Y M. The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4135−4144 doi: 10.1109/TIE.2017.2772192
  • 加载中
计量
  • 文章访问数:  23
  • HTML全文浏览量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-24
  • 录用日期:  2025-09-14
  • 网络出版日期:  2025-10-30

目录

    /

    返回文章
    返回