• 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

露天矿机器人化采运理论技术框架

葛世荣 杨健健 黄乾坤 宋瑞琦 陈龙 陈鹏 杨胜利 何适 丁震 王飞跃

葛世荣, 杨健健, 黄乾坤, 宋瑞琦, 陈龙, 陈鹏, 杨胜利, 何适, 丁震, 王飞跃. 露天矿机器人化采运理论技术框架. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250097
引用本文: 葛世荣, 杨健健, 黄乾坤, 宋瑞琦, 陈龙, 陈鹏, 杨胜利, 何适, 丁震, 王飞跃. 露天矿机器人化采运理论技术框架. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250097
Ge Shi-Rong, Yang Jian-Jian, Huang Qian-Kun, Song Rui-Qi, Chen Long, Chen Peng, Yang Sheng-Li, He Shi, Ding Zhen, Wang Fei-Yue. A theoretical and technical framework for roboticized mining and hauling in open-pit mines. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250097
Citation: Ge Shi-Rong, Yang Jian-Jian, Huang Qian-Kun, Song Rui-Qi, Chen Long, Chen Peng, Yang Sheng-Li, He Shi, Ding Zhen, Wang Fei-Yue. A theoretical and technical framework for roboticized mining and hauling in open-pit mines. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250097

露天矿机器人化采运理论技术框架

doi: 10.16383/j.aas.c250097 cstr: 32138.14.j.aas.c250097
基金项目: 国家重点基础研究发展计划 (2022YFB4703700)资助
详细信息
    作者简介:

    葛世荣:中国工程院院士, 中国矿业大学(北京)教授. 主要研究方向为智能采矿装备, 摩擦可靠性研究. E-mail: gesr@cumtb.edu.cn

    杨健健:中国矿业大学(北京)机电与信息工程学院教授. 2013年获得中国矿业大学(北京)博士学位. 主要研究方向为矿山机器人、装备智能化、矿山无人驾驶. 本文通信作者.E-mail: yangjiannedved@163.com

    黄乾坤:中国矿业大学(北京)机械与电气工程学院博士研究生. 研究方向为露天矿机器人化采运, 多体动力学.E-mail: m18810260819@163.com

    宋瑞琦:中国科学院自动化研究所多模态人工智能系统全国重点实验室助理研究员. 2016年获北京航空航天大学硕士学位. 研究方向包括自动驾驶、具身智能及人工智能.E-mail: ruiqi.song@ia.ac.cn

    陈龙:中国科学院自动化研究所多模态人工智能系统全国重点实验室研究员, 2013年获武汉大学博士学位. 研究方向包括自动驾驶、具身智能及人工智能.E-mail: long.chen@ia.ac.cn

    陈鹏:北京航空航天大学交通科学与工程学院教授. 2012年获得日本名古屋大学博士学位. 主要研究方向为自动驾驶行为决策与轨迹规划.E-mail: cpeng@buaa.edu.cn

    杨胜利:国能准能集团有限责任公司高级工程师, 2015年获得内蒙古工业大学机械工程领域工程硕士学位. 主要研究方向为露天矿大型设备智能化, 无人驾驶.E-mail: hs22@mails.tsinghua.edu.cn

    何适:航天重型工程装备有限公司正高级工程师, 2014年获得华中科技大学硕士学位, 主要研究方向为特种车辆整车控制、线控系统及智能驾驶.E-mail: hs22@mails.tsinghua.edu.cn

    丁震:国家能源集团煤炭运输部正高级工程师, 2015年获得中国矿业大学(北京)硕士学位, 主要研究方向煤矿采掘装备、煤矿智能化、露天矿无人驾驶、煤炭行业大模型.E-mail: 10000340@ceic.com

    王飞跃:中国科学院自动化研究所研究员. 主要研究方向为平行系统的方法与应用, 社会计算, 平行智能以及知识自动化.E-mail: feiyue.wang@ia.ac.cn

A Theoretical and Technical Framework for Roboticized Mining and Hauling in Open-pit Mines

Funds: Supported by National Basic Research Program of China (2022YFB4703700)
More Information
    Author Bio:

    GE Shi-Rong Academician of the Chinese Academy of Engineering, Professor at China University of Mining and Technology-Beijing. His research interests include intelligent mining equipment, and friction reliability

    YANG Jian-Jian Professor at China University of Mining and Technology-Beijing. He received his Ph.D. degree from China University of Mining and Technology-Beijing in 2013. His research interests include mining robotics, equipment intelligence, and autonomous mining transportation. Corresponding author of this paper

    HUANG Qian-Kun Ph.D. candidat of the Mechanical and Electrical Engineering College of China University of Mining and Technology-Beijing. His research interests include robotic mining and transportation in open-pit mines, and multi-body dynamics

    SONG Rui-Qi Assistant researcher at the State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences. He received his Master's degree from Beihang University in 2016. His research interests include autonomous driving, embodied intelligence, and artificial intelligence

    CHEN Long Researcher at the State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences. He received his Ph.D. degree from Wuhan University in 2013. His research interests include autonomous driving, embodied intelligence, and artificial intelligence

    CHEN Peng Professor in School of Transportation Science and Engineering, Beihang University. He received his Ph.D. degree from Nagoya University, Japan, in 2012. His research interests include behavioral decision-making and trajectory planning for autonomous driving

    YANG Sheng-Li Senior engineer at China Energy Zhunneng Group. He received his master degree from Mechanical Engineering from Inner Mongolia University of Technology in 2015, His research interests include intelligentization of large equipment in open-pit mines, and unmanned driving

    HE Shi Professorate senior engineer at Aerospace Heavy-duty Engineering Equipment Co., Ltd. He received his master degree from Huazhong University of Science and Technology in 2014. His research interests include Integrated Vehicle Control for Special-Purpose Vehicles, by-wire systems, and intelligent driving

    DING Zhen Professorate senior engineer at the CHN ENERGY Investment Group Co., Ltd. He received his master degree from the China University of Mining and Technology-Beijing in 2015. His research interests include coal mining equipment, intelligent mining, unmanned driving in open-pit mining, and coal industry large model

    WANG Fei-Yue Professor at the Institute of Automation, Chinese Academy of Sciences. His research interests include theories, methods, and applications for robotics, parallel systems, social computing, parallel intelligence, and knowledge automation

  • 摘要: 露天矿机器人化采运系统面临复杂特定场景数据不足、极端工况测试困难、现场试验与调试安全风险高、高动态变化环境的感知与建模复杂和全场景物理实验周期长等挑战, 亟需突破提效开采演化机理、高精度全域融合感知、高效率稳定协同控制、高可靠安全群体管控4大科学问题. 通过研究极端环境全域多模感知与变载稳健自适应控制、动态装卸区多机装载协同与多车高效卸载规划、采运系统自主学习建模与虚实融合平行仿真、高适用性工程应用方案, 提出露天矿立足机器人化采运“端边感知、平行控制”的智慧生产模式, 从感控、协同、调度、应用等多层次提出机器人化采运关键理论与技术. 通过技术创新和迭代优化, 实现我国露天矿机器人化采运系统技术自主创新和关键技术自主可控, 确保露天煤矿机器人化运输车的大批量安全高效作业运行, 形成我国露天煤矿迈向高水平智能化的“双十 (10项创新技术、10项机器人化采运标准)、双百 (100台车应用示范, 较有人系统的110%的综合运输运行效率)、双千 (1000台车容量的监控平台, 1000小时平均无故障运行时间)”的中国方案, 有力支撑我国矿山智能化绿色开采发展战略.
  • 图  1  矿山5.0的4I- 5O- 6S体系[3]

    Fig.  1  4I-5O-6S system of mine 5.0[3]

    图  2  机器人化采运面临的主要难点

    Fig.  2  Key challenges faced by robotic mining operations

    图  3  机器人化采运的“端边感知、平行控制”智慧架构

    Fig.  3  "End-edge sensing, parallel control" intelligent framework for robotic mining operations

    图  4  端边感知理论与技术框架图

    Fig.  4  Theoretical and technical framework for end-edge sensing

    图  5  基于PCA- pointPillars小目标检测技术路线

    Fig.  5  PCA-pointpillars small target detection

    图  6  矿区3D目标检测性能对比图

    Fig.  6  3D object detection performance comparison chart for mine sites

    图  7  世界模型生成矿区驾驶场景数据

    Fig.  7  Generation of world models for mining area driving scene data

    图  8  多模态BEV特征融合

    Fig.  8  Fusion of multi-modal features in bird's eye view

    图  9  多模态运动估计融合

    Fig.  9  Fusion of multi-modal motion estimation

    图  10  矿区三维高斯重建及投影模型

    Fig.  10  3D Gaussian reconstruction and projection model of the mining area

    图  11  基于北斗的组合导航

    Fig.  11  Beidou-based integrated navigation methodology

    图  12  基于时空置信度的多模态传感器融合定位方法

    Fig.  12  Multi-modal sensor fusion localization approach based on spatiotemporal confidence

    图  13  车端与路侧感知系统配置

    Fig.  13  Configuration of vehicle and roadside perception systems

    图  14  基于BEV的多模态端边系统全域感知技术路线

    Fig.  14  BEV-based multi-modal edge system for comprehensive perception technology roadmap

    图  15  平行控制理论与技术框架图

    Fig.  15  Parallel control theory and technical framework

    图  16  平行仿真平台设计总体技术路线

    Fig.  16  Comprehensive technological roadmap for parallel simulation platform design

    图  17  平行仿真平台架构

    Fig.  17  Architecture of the parallel simulation platform

    图  18  算法框架图

    Fig.  18  Algorithmic framework

    图  19  铲斗精准定位停靠技术图

    Fig.  19  Precision bucket positioning and docking technology

    图  20  虚拟地形场路径跟踪控制原理示意图

    Fig.  20  Schematic of virtual terrain path tracking control principle

    图  21  车铲多机协同技术

    Fig.  21  Multi-machine collaborative technology for vehicle and bucket systems

    图  22  碰撞消解算法

    Fig.  22  Collision resolution algorithm

    图  23  人机平行在环监控框架

    Fig.  23  Human-machine parallel ring monitoring framework

    图  24  车辆异常行为处理流程

    Fig.  24  Process for handling abnormal vehicle behavior

    图  25  改进遗传算法流程图

    Fig.  25  Flowchart of the improved genetic algorithm

    图  26  无人驾驶技术应用建设体系

    Fig.  26  Framework for the application and development of autonomous driving technology

    图  27  黑岱沟露天煤矿无人驾驶重型运输矿卡系统作业流程图

    Fig.  27  Workflow of autonomous driving heavy-duty mining truck system at heidaigou open-pit coal mine

    图  28  特殊工况下无人驾驶重型运输矿卡现场作业图

    Fig.  28  On-site operation of autonomous driving heavy-duty mining trucks under special conditions

    图  29  露天矿机器人化采运十项创新技术体系

    Fig.  29  Ten innovative robotic mining technologies for open-pit mines

    图  30  露天矿卡车无人驾驶运输技术要求标准架构

    Fig.  30  Technical specifications for autonomous driving transportation systems in open-pit mines

    图  31  百台运输机器人运输系统编组运行示意图

    Fig.  31  Schematic diagram of formation operation for a system of one hundred transportation robots

    图  32  综合运输效率提升技术

    Fig.  32  Technology for enhancing comprehensive transportation efficiency

    图  33  智能调度与管理平台

    Fig.  33  Intelligent scheduling and management platform

    图  34  露天矿运输机器人健康管理系统

    Fig.  34  Health management system for open-pit mine transportation robots

  • [1] Kinnunen P H M, Kaksonen A H. Towards circular economy in mining: Opportunities and bottlenecks for tailings valorization. Journal of Cleaner Production, 2019, 228: 163−160
    [2] 郑南宁. 无人驾驶也需谨慎. 现代制造, 2020(13): 42

    Zheng Nan-Ning. Autonomous driving also requires caution. Maschinen Markt, 2020(13): 42
    [3] Yang J J, Huang Q K, Ge S R, Wang X, Chen L, Guo Y N, et al. On intelligent mining with parallel intelligence. IEEE Transactions On Intelligent Vehicles, 2023, 8(10): 4296−4300 doi: 10.1109/TIV.2023.3316132
    [4] Chen L, Li Y C, Huang C, Li B, Xing Y, Tian D X. Milestones in autonomous driving and intelligent vehicles: survey of surveys. IEEE Transactions on Intelligent Vehicles, 2023, 8(2): 1046−1056 doi: 10.1109/TIV.2022.3223131
    [5] 中国煤炭工业协会信息化分会. 露天煤矿无人驾驶技术应用发展报告, 中国, 2024

    Informationization Branch of China National Coal Association. Development Report on the Application of Unmanned Driving Technology in Open-pit Coal Mines, China, 2024.
    [6] 葛世荣, 张晞, 薛光辉, 任怀伟, 王宏伟, 庞义辉, 等. 我国煤矿煤机智能技术与装备发展研究. 中国工程科学, 2023, 25(05): 146−156 doi: 10.15302/J-SSCAE-2023.05.013

    Ge Shi-Rong, Zhang Xi, Xue Guang-Hui, Ren Huai-Wei, Wang Hong-Wei, Pang Yi-Hui, et al. Development of intelligent technologies and machinery for coal mining in china's underground coal mines. Strategic Study of CAE, 2023, 25(05): 146−156 doi: 10.15302/J-SSCAE-2023.05.013
    [7] 葛世荣, 胡而已, 裴文良. 煤矿机器人体系及关键技术. 煤炭学报, 2020, 45(01): 455−463 doi: 10.13225/j.cnki.jccs.YG19.1478

    Ge Shi-Rong, Hu Er-Yi, Pei Wen-Liang. Classification system and key technology of coal mine robot. Journal of China Coal Society, 2020, 45(01): 455−463 doi: 10.13225/j.cnki.jccs.YG19.1478
    [8] 鲍久圣, 任强, 葛世荣, 魏聪, 陈超. 露天矿自卸汽车大坡度提升系统设计研究. 煤炭技术, 2019, 38(09): 145−150 doi: 10.13301/j.cnki.ct.2019.09.048

    Bao Jiu-Sheng, Ren Qiang, Ge Shi-Rong, Wei Cong, Chen Chao. Design of large slope hoisting system for dump truck in open-pit mine. Coal Technology, 2019, 38(09): 145−150 doi: 10.13301/j.cnki.ct.2019.09.048
    [9] 王肖, 李克强, 王建强, 徐友春. 基于三维激光雷达的智能车辆目标参数辨识. 汽车工程, 2016, 38(9): 1146−1152 doi: 10.19562/j.chinasae.qcgc.2016.09.017

    Wang Xiao, Li Ke-Qiang, Wang Jian-Qiang, Xu You-Chun. Parameter identification of intelligent vehicle target based on 3d laser radar. Automotive Engineering, 2016, 38(9): 1146−1152 doi: 10.19562/j.chinasae.qcgc.2016.09.017
    [10] 栾博钰, 周伟. 露天煤矿无人驾驶下交叉口协调通行策略研究. 煤炭学报, 2023, 48(S1): 357−367 doi: 10.13225/j.cnki.jccs.2022.0967

    Luan Bo-Yu, Zhou Wei. Study of coordinated access strategy at intersections in open-pit coal mines with unmanned trucks. Journal of China Coal Society, 2023, 48(S1): 357−367 doi: 10.13225/j.cnki.jccs.2022.0967
    [11] Chen C Y, Xu Q, Cai M C, Wang J W, Wang J Q, Li K Q. Conflict-free cooperation method for connected and automated vehicles at unsignalized intersections: Graph-based modeling and optimality analysis. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21897−21914 doi: 10.1109/TITS.2022.3182403
    [12] Berkhahn V, Kleiber M, Langner J, Timmermann C, Weber S. Traffic dynamics at intersections subject to random misperception. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 4501−4511 doi: 10.1109/TITS.2020.3045480
    [13] Fang S S, Li H. Multi-vehicle cooperative simultaneous lidar slam and object tracking in dynamic environments. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(09): 11411−11421 doi: 10.1109/TITS.2024.3360259
    [14] Ngo H, Fang H, Wang H G. Cooperative perception with V2V communication for autonomous vehicles. IEEE Transactions on Vehicular Technology, 2023, 72(9): 11122−11131 doi: 10.1109/TVT.2023.3264020
    [15] Li J L, Xu R S, Liu X Y, Ma J, Chi Z C, Ma J Q, et al. Learning for vehicle-to-vehicle cooperative perception under lossy communication. IEEE Transactions on Intelligent Vehicles, 2023, 8(4): 2650−2260 doi: 10.1109/TIV.2023.3260040
    [16] 王祝, 徐广通, 龙腾. 基于定制内点法的多无人机协同轨迹规划. 自动化学报, 2023, 49(11): 2374−2385 doi: 10.16383/j.aas.c200361

    Wang Zhu, Xu Guang-Tong, Long Teng. Customized interior-point method for cooperative trajectory planning of multiple unmanned aerial vehicles. Acta Automatica Sinica, 2023, 49(11): 2374−2385 doi: 10.16383/j.aas.c200361
    [17] Wang K Z, Wang Y F, Wang L, Du H P, Nam K H. Distributed intersection conflict resolution for multiple vehicles considering longitudinal-lateral dynamics. IEEE Transactions on Vehicular Technology, 2021, 70(5): 4166−4177 doi: 10.1109/TVT.2021.3072629
    [18] 朱永薪, 李永福, 朱浩, 于树友. 通信延时环境下基于观测器的智能网联车辆队列分层协同纵向控制. 自动化学报, 2023, 49(08): 1785−1798

    Zhu Yong-Xin, Li Yong-Fu, Zhu Hao, Yu Shu-You. Observer-based longitudinal control for connected and automated vehicles platoon subject to communication delay. Acta Automatica Sinica, 2023, 49(08): 1785−1798
    [19] 王峰, 黄子路, 韩孟臣, 刑立宁, 王凌. 基于KnCMPSO算法的异构无人机协同多任务分配. 自动化学报, 2023, 49(2): 399−414 doi: 10.16383/j.aas.c210696

    Wang Feng, Huang Zi-Lu, Han Meng-Chen, Xing Li-Ning, Wang Ling. A knee point based coevolution multi-objective particle swarm optimization algorithm for heterogeneous UAV cooperative multi-task allocation. Acta Automatica Sinica, 2023, 49(2): 399−414 doi: 10.16383/j.aas.c210696
    [20] Faroni M, Umbrico A, Beschi M, Orlandini A, Cesta A, Pedrocchi N. Optimal task and motion planning and execution for multiagent systems in dynamic environments. IEEE Transactions on Cybernetics, 2023, 53(6): 3366−3377
    [21] Nooshin A, Hossein M N, Amin M. A genetic algorithm scheme for large scale open-pit mine production scheduling. Mining Technology, 2023, 132(04): 225−236 doi: 10.1080/25726668.2023.2228071
    [22] Huo D, Sari Y A, Zhang Q. Smart dispatching for low-carbon mining fleet: A deep reinforcement learning approach. Journal of Cleaner Production, 2024, 435: 1−11
    [23] Zhang X T, Xiong G, Ai Y F, Liu K H, Chen L. Vehicle dynamic dispatching using curriculum-driven reinforcement learning. Mechanical Systems and Signal Processing, 2024, 204: 1−16
    [24] 陈博言, 沈晴霓, 张晓磊, 张鑫, 李聪, 吴中海. 智能网联汽车的车载网络攻防技术研究进展. 软件学报, 2024, 36(1): 341−370 doi: 10.13328/j.cnki.jos.007196

    Chen Bo-Yan, Shen Qing-Ni, Zhang Xiao-Lei, Zhang Xin, Li Cong, Wu Zhong-Hai. Research progress on attacks and defenses technologies for in-vehicle network of intelligent connected vehicle. Journal of Software, 2024, 36(1): 341−370 doi: 10.13328/j.cnki.jos.007196
    [25] 方万胜, 黄金, 金涛. 基于数字证书的智能网联汽车安全认证技术研究. 道路交通科学技术, 2022(6): 46−51

    Fang Wan-Sheng, Huang Jin, Jin Tao. Research on security authentication technology for intelligent connected vehicles based on digital certificates. Road Traffic Science & Technology, 2022(6): 46−51
    [26] 江枫. 基于LTE-V2X的网联车队信息安全的研究与实现, 北京, 北京邮电大学, 2020

    Jiang Feng. Research and implementation on information security of the LTE-V2X connected platoon [Master thesis], Beijing University of Posts and Telecommunications, China, 2020
    [27] 王晓燕, 杨晶晶, 黄铭, 吴季达, 彭子箫. GNSS干扰和欺骗检测研究现状与展望. 信号处理, 2023, 39(12): 2131−2152 doi: 10.16798/j.issn.1003-0530.2023.12.003

    Wang Xiao-Yan, Yang Jing-Jing, Huang Ming, Wu Ji-Da, Peng Zi-Xiao. Research status and prospect of GNSS jamming and spoofing detection. Journal of Signal Processing, 2023, 39(12): 2131−2152 doi: 10.16798/j.issn.1003-0530.2023.12.003
    [28] 刘登越. 考虑网络攻击影响的智能网联汽车安全防御综述. 综合运输, 2024, 46(1): 79−84 doi: 10.20164/j.cnki.cn11-1197/u.2024.01.014

    Liu Deng-Yue. A review of security defense of connected automated vehicle considering the impact of cyberattack. China Transportation Review, 2024, 46(1): 79−84 doi: 10.20164/j.cnki.cn11-1197/u.2024.01.014
    [29] 陈俊平, 张益泽, 于超, 丁君生. 北斗卫星导航系统精密定位报告算法与性能评估. 测绘学报, 2022, 51(04): 511−521

    Chen Jun-Ping, Zhang Yi-Ze, Yu Chao, Ding Jun-Sheng. Processing algorithms and performance evaluation of BDS RDSS location reporting service. Acta Geodaetica et Cartographica Sinica, 2022, 51(04): 511−521
    [30] 杨元喜. 北斗卫星导航系统的进展、贡献与挑战. 测绘学报, 2010, 39(01): 1−6

    Yang Yuan-Xi. Progress, contribution and challenges of compass/beidou satellite navigation system. Acta Geodaetica et Cartographica Sinica, 2010, 39(01): 1−6
    [31] Gu Y, Hsu L T, Kamijo S. GNSS/onboard inertial sensor integration with the aid of 3-D building map for lane-level vehicle self-localization in urban canyon. IEEE Transactions on Vehicular Technology, 2015, 65(6): 4274−4287
    [32] Zhe X, Li B, Zhang X, Chen L, Huang K. Online cooperative 3D mapping for autonomous driving. In: Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV). Changshu, China: IEEE, 2018. 256-261
    [33] Bloesch M, Czarnowski J, Clark R, Leutenegger S, Davison A. Codeslam—learning a compact, optimisable representation for dense visual SLAM. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE, 2018. 2560-2568
    [34] Koestler L, Yang N, Zeller N, Cremers D. Tandem: Tracking and dense mapping in real-time using deep multi-view stereo. In: Proceedings of 5th Conference on Robot Learning (CoRL). London, England, 2022. 34-45
    [35] Mildenhall B, Srinivasan P P, Tancik M, Barron J T, Ramamoorthi R, Ng R. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 2021, 65(1): 99−106
    [36] Rosinol A, Leonard J J, Carlone L. Nerf-slam: Real-time dense monocular slam with neural radiance fields. In: Proceedings of 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Detroit, USA: IEEE, 2023. 3437-3444
    [37] Suhr J K, Jang J, Min D, Jung H G. Sensor fusion-based low-cost vehicle localization system for complex urban environments. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(5): 1078−1086
    [38] Ramezani M, Khoshelham K. Vehicle positioning in GNSS-deprived urban areas by stereo visual-inertial odometry. IEEE Transactions on Intelligent Vehicles, 2018, 3(2): 208−217 doi: 10.1109/TIV.2018.2804168
    [39] Liu H, Chen M, Zhang G, Bao H, Bao Y. Ice-ba: Incremental, consistent and efficient bundle adjustment for visual-inertial slam. In: Proceedings of 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE/CVF, 2018. 1974-1982
    [40] Ye H, Chen Y, Liu M. Tightly coupled 3d lidar inertial odometry and mapping. In: Proceedings of 2019 International Conference on Robotics and Automation (ICRA). Montreal, Canada: IEEE, 2019. 3144-3150
    [41] Hu A, Murez Z, Mohan N, Dudas S, Hawke J, Badrinarayanan V, et al. Fiery: Future instance prediction in bird's-eye view from surround monocular cameras. In: Proceedings of the 18th IEEE/CVF International Conference on Computer Vision (CVPR). Electr Network: IEEE/CVF, 2021. 15273-15282
    [42] Wen Y, Zhao Y, Liu Y, Jia F, Wang Y, Luo C, et al. Panacea: Panoramic and controllable video generation for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2024. 17347-17363
    [43] Wang Y, He J, Fan L, Li H, Chen Y, Zhang Z. Driving into the future: Multiview visual forecasting and planning with world model for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2024. 19354-19374
    [44] Caesar H, Bankiti V, Lang A H, Vora S, Liong V E, Xu Q, et al. Nuscenes: A multimodal dataset for autonomous driving In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Electr Network: IEEE, 2020. 11621-11631
    [45] Liang T, Xie H, Yu K, Xia Z, Lin Z, Wang Y, et al. Bevfusion: A simple and robust lidar-camera fusion framework. In: Proceedings of 36th Conference on Neural Information Processing Systems (NeurIPS). Electr Network, 2022. 10421-10434
    [46] Liu Z, Tang H, Amini A, Yang X, Mao H, Rus D L, et al. Bevfusion: Multi-task multi-sensor fusion with unified bird's-eye view representation. In: Proceedings of 2023 IEEE international conference on robotics and automation (ICRA). London, England, 2023. 2774-2781
    [47] Philion J, Fidler S. Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3d. In: Proceedings of 16th European Conference on Computer Vision-ECCV-Biennial. Electr Network, 2020. 194-210
    [48] Laddha A, Gautam S, Palombo S, Pandey S, Vallespi-Gonzalez C. Mvfusenet: Improving end-to-end object detection and motion forecasting through multi-view fusion of lidar data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Electr Network: IEEE, 2021. 2865-2874
    [49] Paigwar A, Baranov E, Renzaglia A, Laugier C, Legay A. Probabilistic collision risk estimation for autonomous driving: Validation via statistical model checking. In: Proceedings of 31st IEEE Intelligent Vehicles Symposium (IV). Electr Network: IEEE, 2020. 737-743
    [50] LaValle S M, Kuffner J J, Donald B R. Rapidly-exploring random trees: Progress and prospects. In: Proceedings of 4th International Workshop on the Algorithmic Foundations of Robotics (WAFR). Hanover, USA, 2001. 293-308
    [51] Li Q, Wang Y, Wang Y, Zhao H. Hdmapnet: An online hd map construction and evaluation framework. In: Proceedings of the International Conference on Robotics and Automation (ICRA). Philadelphia, USA: IEEE, 2022. 4628-4634
    [52] Liao B, Chen S, Wang X, Cheng T, Zhang Q, Liu W, et al. Maptr: Structured modeling and learning for online vectorized hd map construction. arXiv: 2208.14437, 2023.
    [53] Zhang X, Fu J, Chen S, Zheng N. Real-time, secure, and computationally efficient navigation: a prediction-planning framework using occupancy grid map. In: Proceedings of the IEEE 26th International Conference on Intelligent Transportation Systems (ITSC). Bilbao, SPAIN: IEEE, 2023. 4352-4359
    [54] Xiong L, Zhang Y, Liu Y, Xiao H, Tang C. Integrated decision making and planning based on feasible region construction for autonomous vehicles considering prediction uncertainty. IEEE Transactions on Intelligent Vehicles, 2023, 8(11): 4515−4523 doi: 10.1109/TIV.2023.3299845
    [55] Chen L, Hu X, Tian W, Wang H, Cao D, Wang F. Parallel planning: A new motion planning framework for autonomous driving. IEEE/CAA Journal of Automatica Sinica, 2018, 6(1): 236−246
    [56] 郑南宁. 人工智能新时代. 智能科学与技术学报, 2019, 1(1): 1−3

    Zheng Nan-Ning. The new era of artificial intelligence. Chinese Journal of Intelligent Science and Technology, 2019, 1(1): 1−3
    [57] Wang T, Zhu X, Pang J, Lin D. Fcos3d: Fully convolutional one-stage monocular 3d object detection. In: Proceedings of International Conference on Computer Vision Workshops. Virtual Event: IEEE, 2021. 913-922
    [58] Lang A H, Vora S, Caesar H, Zhou L, Yang J, Beijbom O. Pointpillars: Fast encoders for object detection from point clouds. In: Proceedings of 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019. 12697-12705
    [59] Yin T, Zhou X, Krahenbuhl P. Center-based 3d object detection and tracking. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Electr Network: IEEE, 2021. 11784-11793
    [60] Sindagi V A, Zhou Y, Tuzel O. Mvx-net: Multimodal voxelnet for 3d object detection. In: Proceedings of International Conference on Robotics and Automation. Montreal, Canada: IEEE, 2019. 7276-7272
    [61] Vora S, Lang A H, Helou B, Beijbom O. Pointpainting: sequential fusion for 3d object detection. In: Proceedings of Conference on Computer Vision and Pattern Recognition. Electr Network: IEEE, 2020. 4604-4612
    [62] Wang C, Ma C, Zhu M, Yang X. Pointaugmenting: Cross-modal augmentation for 3d object detection. In: Proceedings of Conference on Computer Vision and Pattern Recognition. Electr Network: IEEE, 2021. 11794-11803
    [63] Liu Z, Huang T, Li B, Chen X, Wang X, Bai X. Epnet++: Cascade bi-directional fusion for multi-modal 3d object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(7): 8324−8341
    [64] Bai X, Hu Z, Zhu X, Huang Q, Chen Y, Fu H, et al. Transfusion: Robust lidar-camera fusion for 3d object detection with transformers. In: Proceedings of Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE, 2022. 1090-1099
    [65] Liu Z, Tang H, Amini A, Yang X, Mao H, Rus D, et al. Bevfusion: Multi-task multi-sensor fusion with unified bird’s-eye view representation. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). London, England: IEEE, 2023. 2774-2781
    [66] Chen L, Xie J K, Zhang X T, Deng J L, Ge S.R, Wang F Y. Mining 5.0: Concept and framework for intelligent mining systems in CPSS. IEEE Transactions on Intelligent Vehicles, 2023, 8(6): 3533−3536 doi: 10.1109/TIV.2023.3285417
    [67] 王飞跃. 平行控制: 数据驱动的计算控制方法. 自动化学报, 2013, 39(4): 293−302

    Wang F Y. Parallel control: A method for data-driven and computational control. Acta Automatica Sinica, 2013, 39(4): 293−302
    [68] Chen L, Li Y C, Huang C, Li B, Xing Y, Tian D X, et al. Milestones in autonomous driving and intelligent vehicles: survey of surveys. IEEE Transactions on Intelligent Vehicles, 2023, 8(2): 1046−1056 doi: 10.1109/TIV.2022.3223131
    [69] Chen L, Li Y C, Huang C, Li B, Xing Y, Tian D X, et al. Milestones in autonomous driving and intelligent vehicles—part I: Control, computing system design, communication, hd map, testing, and human behaviors. IEEE Transactions on Systems Man Cybernetics-Systems, 2023, 53(9): 5831−5847 doi: 10.1109/TSMC.2023.3276218
    [70] Hu X, Li S, Huang T, Tang B, Huai R and Chen L. How simulation helps autonomous driving: A survey of sim2real, digital twins, and parallel intelligence. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 593−612 doi: 10.1109/TIV.2023.3312777
    [71] Ai Y F, Liu Y H, Gao Y, Zhao C, Cheng X, Han J P, et al. PMWorld: A parallel testing platform for autonomous driving in mines. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 1402−1411 doi: 10.1109/TIV.2023.3332739
    [72] Chen L, Li Y C, Huang C, Li B, Xing Y, Tian D X, et al. Milestones in autonomous driving and intelligent vehicles—part II: Perception and planning. IEEE Transactions on Systems, Man, and Cybernetics, 2023, 53(10): 6401−6415 doi: 10.1109/TSMC.2023.3283021
    [73] Chen L, Zhang Y, Tian B, Ai Y, Cao D, Wang F Y. Parallel driving OS: A ubiquitous operating system for autonomous driving in CPSS. IEEE Transactions on Intelligent Vehicles, 2022, 7(4): 886−895 doi: 10.1109/TIV.2022.3223728
    [74] Li L, Wang X, Wang K F, Lin Y L, Xin J M, Chen L, et al. Parallel testing of vehicle intelligence via virtual-real interaction. Science Robotics, 2019, 4(28): eaaw4106 doi: 10.1126/scirobotics.aaw4106
  • 加载中
计量
  • 文章访问数:  45
  • HTML全文浏览量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-10
  • 录用日期:  2025-11-06
  • 网络出版日期:  2025-12-30

目录

    /

    返回文章
    返回