2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多星接管目标的分布式近似最优姿态跟踪控制

王孟磊 吴宝林 耿云海

王孟磊, 吴宝林, 耿云海. 多星接管目标的分布式近似最优姿态跟踪控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240765
引用本文: 王孟磊, 吴宝林, 耿云海. 多星接管目标的分布式近似最优姿态跟踪控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240765
Wang Meng-Lei, Wu Bao-Lin, Geng Yun-Hai. Distributed approximate optimal attitude tracking control for taking-over the target by multiple satellites. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240765
Citation: Wang Meng-Lei, Wu Bao-Lin, Geng Yun-Hai. Distributed approximate optimal attitude tracking control for taking-over the target by multiple satellites. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240765

多星接管目标的分布式近似最优姿态跟踪控制

doi: 10.16383/j.aas.c240765 cstr: 32138.14.j.aas.c240765
基金项目: 国家自然科学基金(62188101)资助
详细信息
    作者简介:

    王孟磊:哈尔滨工业大学航天学院博士研究生. 2020年获得哈尔滨工业大学硕士学位. 主要研究方向为组合天航天器的姿态控制和参数辨识. E-mail: 20b918097@stu.hit.edu.cn

    吴宝林:哈尔滨工业大学航天学院教授. 2011年获得南洋理工大学博士学位. 主要研究方向为航天器姿态控制, 编队控制和智能控制. 本文通信作者. E-mail: wubaolin@hit.edu.cn

    耿云海:哈尔滨工业大学航天学院教授. 2003年获得哈尔滨工业大学博士学位. 主要研究方向为飞行器动力学和制导、导航与控制技术. E-mail: gengyh@hit.edu.cn

Distributed Approximate Optimal Attitude Tracking Control for Taking-over the Target by Multiple Satellites

Funds: Supported by National Natural Science Foundation of China (62188101)
More Information
    Author Bio:

    WANG Meng-Lei  Ph.D. candidate at School of Astronautics, Harbin Institute of Technology. He received his Master degree from Harbin Institute of Technology in 2020. His research interest covers attitude control and parameter identification for the conbined spacecraft

    WU Bao-Lin  Professor at School of Astronautics, Harbin Institute of Technology. He received his Ph.D. degree from Nanyang Technological University in 2011. His research interest covers spacecraft attitude control, formation control, and intelligent control. Corresponding author of this paper

    GENG Yun-Hai  Professor at School of Astronautics, Harbin Institute of Technology. He received his Ph.D. degree from Harbin Institute of Technology in 2003. His research interest covers space flight dynamics and aerospace guidance, navigation and control technology

  • 摘要: 在多服务星对失效航天器进行姿态接管控制的在轨服务任务中, 考虑惯量矩阵未知和执行机构饱和的情况, 基于自适应动态规划(ADP)方法提出一种分布式姿态跟踪接管控制策略. 首先, 通过对姿态系统的建模分析, 设计一种含有力矩饱和约束和期望力矩补偿的值函数, 在ADP框架下, 用一组基函数逼近最优值函数, 并得到分布式近似最优姿态跟踪控制策略; 然后, 为避免使用角加速度信息, 分别构建关于惯量参数和权重参数的滤波形式的线性回归模型, 根据并行学习方法、参数一致性算法和离线策略轨迹, 设计惯量参数自适应辨识律和权重更新律; 接着使用李雅普诺夫方法证明姿态跟踪误差、惯量矩阵辨识误差和权重参数估计误差的一致最终有界; 最后, 仿真结果验证了分布式跟踪控制方法在力矩饱和约束下对姿态跟踪和惯量矩阵辨识的有效性.
  • 图  1  目标接管过程的示意图

    Fig.  1  The schematic diagram of the takeover target processes

    图  2  组合体航天器示意图

    Fig.  2  The schematic diagram of the combined spacecraft

    图  3  分布式姿态接管控制系统框图

    Fig.  3  The diagram of the distributed attitude takeover control system

    图  4  服务卫星之间的通信链路

    Fig.  4  The communication links among the service satellites

    图  5  姿态角及其误差曲线

    Fig.  5  Curves of attitude angles and their errors

    图  6  姿态角速度及其误差曲线

    Fig.  6  Curves of attitude angular velocity and their errors

    图  7  总力矩及7号服务卫星提供的分力矩曲线

    Fig.  7  Curves of total torques and divided torques provided by service satellite 7

    图  8  惯量参数估计值及其误差曲线

    Fig.  8  Curves of estimates of the inertia parameters and their errors

    图  9  惯量参数估计值的一致性误差

    Fig.  9  Consensus errors of inertia parameter estimates

    图  10  服务卫星对权重的估计

    Fig.  10  The weight estimates by service satellites

    图  11  服务卫星的值函数曲线

    Fig.  11  Curves of the value function of service satellites

    表  1  服务卫星相对姿态角的真值

    Table  1  True values of relative attitude angles of service satellites

    $ k $ 相对姿态角$ {{ \boldsymbol{\alpha }_{B}^{k}}}\,\; (^\circ) $ $ k $ 相对姿态角$ {{ \boldsymbol{\alpha }_{B}^{k}}}\,\; (^\circ) $
    $ 1 $ $ \left[ {0,\;0,\;0 } \right] $ $ 11 $ $ \left[ {53,\;10,\;11 } \right] $
    $ 2 $ $ \left[ {-20,\;35,\;160} \right] $ $ 12 $ $ \left[ {63,\;15,\;80 } \right] $
    $ 3 $ $ \left[ {75,\;16,\;93 } \right] $ $ 13 $ $ \left[ {-83,\;-77,\;168} \right] $
    $ 4 $ $ \left[ {-108,\;61,\;-5} \right] $ $ 14 $ $ \left[ {-84,\;-48,\;16 } \right] $
    $ 5 $ $ \left[ {-173,\;8,\;15 } \right] $ $ 15 $ $ \left[ {37,\;-3,\;-101 } \right] $
    $ 6 $ $ \left[ {117,\;83,\;163} \right] $ $ 16 $ $ \left[ {137,\;83,\;-173} \right] $
    $ 7 $ $ \left[ {23,\;46,\;12 } \right] $ $ 17 $ $ \left[ {118,\;3,\;-157 } \right] $
    $ 8 $ $ \left[ {60,\;73,\;166 } \right] $ $ 18 $ $ \left[ {-86,\;78,\;-169} \right] $
    $ 9 $ $ \left[ {133,\;-16,\;84} \right] $ $ 19 $ $ \left[ {43,\;78,\;11 } \right] $
    $ 10 $ $ \left[{162,\;54,\;13 } \right] $ $ 20 $ $ \left[ {77,\;12,\;180 } \right] $
    下载: 导出CSV

    表  2  姿态控制仿真参数

    Table  2  Parameters of attitude control simulation

    参数 数值
    姿态初值 $ {{\boldsymbol{q}}}(0)={{\left[0.953\,\;3\,\;-0.202\,\;3\,\;0.188\,\;1\,\; -0.122\,\;5 \right]}^{\text{T}}} $
    角速度初值 $ \boldsymbol{\omega }(0)={{\left[ 0.1\,\;-1.5\,\;-0.14 \right]}^{\text{T}}}\,\;{^\circ/\text{s}} $
    期望姿态初值 $ {{\boldsymbol{q}}_{d}}(0)={{\left[ 1\,\;0\,\; 0\,\;0 \right]}^{\text{T}}} $
    期望姿态角速度 $ {{\boldsymbol{\omega }}_{d}}(t)=\left[\begin{matrix} 0.4\sin \left( 0.048t \right)\\0.35\cos \left( 0.048t \right)\\0.3\sin \left( 0.048t \right) \end{matrix} \right]\,\;{^{\circ }}/{\text{s}} $
    执行机构最大力矩 $ {{\tau }_{\max }}=0.1 \,\;{\text{N}\cdot \text{m}} $
    值函数因子 $ {{Q}_{\omega }}=100 $, $ {{Q}_{q}}=100 $, $ {{Q}_{\tau }}=1 $
    惯量参数初值 $ \hat{\boldsymbol \theta} \left( 0 \right)=\left[ {4\,\;059\times{{\boldsymbol 1}_{1\times 3}}} \,\; {{\boldsymbol 0}_{1\times3}} \right]^{\text{T}} $
    惯量参数上限 $ \bar{\boldsymbol{\theta }}_k={{\left[ 5\,\;000 \,\; 5\,\;000 \,\; 5\,\;000\,\; 400\,\; 400\,\; 400\right]}^{\text{T}}} $
    惯量参数下限 $ \underline{\boldsymbol{\theta }}_k={{\left[ 1\,\;500\,\; 1\,\;500 \,\; 1\,\;500\,\; -400\,\; -400\,\; -400\right]}^{\text{T}}} $
    式(27)、(31)的
    参数
    $ \begin{array}{c} {{\bar{p}}_{\theta }}=30,\; {{\bar{\kappa }}_{\theta }}=10,\; {{\underline{\kappa }}_{\theta }}=0.4,\; {{K}_{\theta 1}}=20,\;\\{{K}_{\theta 2}}=1,\; {{K}_{\theta 3}}=0.004,\; {{\gamma }_{\theta 1}}=0.1,\; {{\gamma }_{\theta 2}}=0.1\end{array} $
    权重参数初值 $ \hat{\boldsymbol W} \left( 0 \right)=5\times{{10}^{4}}\times{{\boldsymbol 1}_{6\times 1}} $
    权重参数上限 $ {{\bar{\boldsymbol{W}}}_{k}}={{\left[ 6\times {{\boldsymbol 1}_{1\times 3}} \,\;8\times {{\boldsymbol 1}_{1\times 3}}\right]}^{\text{T}}}\times{{10}^{4}} $
    权重参数下限 $ {{\underline{\boldsymbol{W}}}_{k}}={{\left[ 1\times {{\boldsymbol 1}_{1\times 3}} \,\;2\times {{\boldsymbol 1}_{1\times 3}} \right]}^{\text{T}}}\times {{10}^{4}} $
    式(40)、(42)的
    参数
    $ \begin{array}{c} {{\bar{p}}_{w}}=20,\; {{K}_{w1}}=50,\; {{K}_{w2}}=200,\;\\{{\gamma }_{w1}}=1,\; {{\gamma }_{w2}}=1\end{array} $
    下载: 导出CSV
  • [1] Flores-Abad A, Ma O, Pham K, Ulrich S. A review of space robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 2014, 68: 1−26 doi: 10.1016/j.paerosci.2014.03.002
    [2] Li W J, Cheng D Y, Liu X G, Wang Y B, Shi W H, Tang Z X, et al. On-orbit service (OOS) of spacecraft: A review of engineering developments. Progress in Aerospace Sciences, 2019, 108: 32−120 doi: 10.1016/j.paerosci.2019.01.004
    [3] 黄攀峰, 鲁迎波, 张帆, 刘亚. 失效航天器接管控制技术发展综述. 上海航天(中英文), 2024, 41(3): 47−62

    Huang Pan-Feng, Lu Ying-Bo, Zhang Fan, Liu Ya. Overview of Takeover Control Technology for Failed Spacecraft. Aerospace Shanghai (Chinese & English), 2024, 41(3): 47−62
    [4] Lin Z J, Wu B L, Wang D W. Specific tracking control of rotating target spacecraft under safe motion constraints. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 2422−2438 doi: 10.1109/TAES.2022.3214799
    [5] 袁利, 姜甜甜, 魏春岭, 杨孟飞. 空间控制技术发展与展望. 自动化学报, 2023, 49(3): 476−493

    Yuan Li, Jiang Tian-Tian, Wei Chun-Ling, Yang Meng-Fei. Advances and perspectives of space control technology. Acta Automatica Sinica, 2023, 49(3): 476−493
    [6] Chang H T, Huang P F, Zhang Y Z, Meng Z J, Liu Z X. Distributed control allocation for spacecraft attitude takeover control via cellular space robot. Journal of Guidance, Control, and Dynamics, 2018, 41(11): 2499−2506 doi: 10.2514/1.G003626
    [7] Lang X Y, de Ruiter A. A control allocation scheme for spacecraft attitude stabilization based on distributed average consensus. Aerospace Science and Technology, 2020, 106: Article No. 106173 doi: 10.1016/j.ast.2020.106173
    [8] Han N, Luo J J, Zheng Z X, Sun J. Distributed cooperative game method for attitude takeover of failed satellites using nanosatellites. Aerospace Science and Technology, 2020, 106: Article No. 106151 doi: 10.1016/j.ast.2020.106151
    [9] 吕跃勇, 方慧, 秦堂皓, 郭延宁. 组合体航天器输入-状态稳定姿态接管控制. 宇航学报, 2021, 42(7): 873−880

    Lyu Yue-Yong, Fang Hui, Qin Tang-Hao, Guo Yan-Ning. Input-to-state stable attitude takeover control for combined spacecraft. Journal of Astronautics, 2021, 42(7): 873−880
    [10] Meng Z J, Li Q W. Optimal attitude takeover control for failed spacecraft based on multi-nanosatellites. Journal of the Franklin Institute, 2023, 360(7): 4947−4972 doi: 10.1016/j.jfranklin.2023.03.037
    [11] Zhao Q, Duan G R. Exponential position and attitude tracking control of spacecraft with unbiased parameter identification. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(1): 1113−1128 doi: 10.1109/TAES.2023.3334252
    [12] 常海涛, 黄攀峰, 鹿振宇, 孟中杰, 张夷斋. 空间细胞机器人接管非合作目标时的交互式参数辨识方法. 机器人, 2017, 39(2): 129−138

    Chang Hai-Tao, Huang Pan-Feng, Lu Zhen-Yu, Meng Zhong-Jie, Zhang Yi-Zhai. Interactive parameter identification of cellular space robots for non-cooperative spacecraft takeover control. Robot, 2017, 39(2): 129−138
    [13] Han N, Luo J J, Ma W H, Yuan J P. Integrated identification and control for nanosatellites reclaiming failed satellite. Acta Astronautica, 2018, 146: 387−398 doi: 10.1016/j.actaastro.2018.03.006
    [14] 张化光, 张欣, 罗艳红, 杨珺. 自适应动态规划综述. 自动化学报, 2013, 39(4): 303−311 doi: 10.1016/S1874-1029(13)60031-2

    Zhang Hua-Guang, Zhang Xin, Luo Yan-Hong, Yang Jun. An overview of research on adaptive dynamicprogramming. Acta Automatica Sinica, 2013, 39(4): 303−311 doi: 10.1016/S1874-1029(13)60031-2
    [15] Dong H Y, Zhao X W, Hu Q L, Yang H Y, Qi P Y. Learning-based attitude tracking control with high-performance parameter estimation. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 2218−2230 doi: 10.1109/TAES.2021.3130537
    [16] Wei C S, Luo J J, Daio H H, Duan G R. Learning-based adaptive attitude control of spacecraft formation with guaranteed prescribed performance. IEEE Transactions on Cybernetics, 2019, 49(11): 4004−4016 doi: 10.1109/TCYB.2018.2857400
    [17] 肖冰, 张海朝. 航天器姿态稳定强化学习鲁棒最优控制方法. 航空学报, 2024, 45(1): 628890

    Xiao Bing, Zhang Hai-Chao. Reinforcement learning robust optimal control for spacecraft attitude stabilization. Acta Aer-onautica et Astronautica Sinica, 2024, 45(1): 628890
    [18] Ni Y, Yang H, Jiang B. Fault-tolerant coverage control of multiple satellites: A differential graphical game approach. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 5516−5529
    [19] Liu Y H, Ma G F, Lyu Y Y, Wang P Y. Neural network-based reinforcement learning control for combined spacecraft attitude tracking maneuvers. Neurocomputing, 2022, 484: 67−78 doi: 10.1016/j.neucom.2021.07.099
    [20] 韩楠, 罗建军, 马卫华. 失效卫星姿态接管的并行学习合作博弈控制. 航空学报, 2021, 42(3): 324307

    Han Nan, Luo Jian-Jun, Ma Wei-Hua. Concurrent learning cooperative game control for attitude takeover of failed satellites. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 324307
    [21] Han N, Luo J J, Zong L J. Cooperative game method for on-orbit substructure transportation using modular robots. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1161−1175 doi: 10.1109/TAES.2021.3111141
    [22] Wu H N, Wang M. Attitude takeover control of failed spacecraft via leader-followers adaptive cooperative game. Journal of Aerospace Information Systems, 2023, 20(11): 773−784 doi: 10.2514/1.I011242
    [23] Chowdhary G. Concurrent Learning for Convergence in Adaptive Control Without Persistency of Excitation[Ph. D. dissertation]. Georgia Institute of Technology, USA, 2010.
    [24] 赵琴. 具有惯量参数辨识的组合体航天器位姿联合控制[博士论文]. 哈尔滨工业大学, 中国, 2022.

    Zhao Qin. Integrated Position and Attitude Control for Spacecraft With Inertia Parameter Identification[Ph. D. dissertation]. Harbin Institute of Technology, 2022.
    [25] Olfati-Sarber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215−233 doi: 10.1109/JPROC.2006.887293
    [26] Deptula P, Bell Z I, Doucette E A, Curtis J W, Dixon W E. Data-based reinforcement learning approximate optimal control for an uncertain nonlinear system with control effectiveness faults. Automatica, 2020, 116: Article No. 108922 doi: 10.1016/j.automatica.2020.108922
    [27] Wang M L, Geng Y H, Wu B L, Wang D W. Distributed adaptive attitude takeover control of failed spacecraft with parameters identification. IEEE Transactions on Control Systems Technology, 2023, 31(2): 897−904 doi: 10.1109/TCST.2022.3187921
    [28] Chowdhary G, Johnson E. A singular value maximizing data recording algorithm for concurrent learning. In: Proceedings of the 2011 American Control Conference. San Francisco, CA, USA: IEEE, 2011. 3547-3552
    [29] Kamalapurkar R, Dinh H, Bhasin S, Dixon W E. Approximate optimal trajectory tracking for continuous-time nonlinear systems. Automatica, 2015, 51: 40−48 doi: 10.1016/j.automatica.2014.10.103
    [30] Deptula P, Bell Z I, Zegres F M, Licitra R A, Dixon W E. Approximate optimal influence over an agent through an uncertain interaction dynamic. Automatica, 2021, 134: Article No. 109913 doi: 10.1016/j.automatica.2021.109913
  • 加载中
计量
  • 文章访问数:  35
  • HTML全文浏览量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-02
  • 录用日期:  2025-09-02
  • 网络出版日期:  2025-10-15

目录

    /

    返回文章
    返回