[1]
|
Ljung L, Hjalmarsson H, Ohlsson H. Four encounters with system identification. European Journal of Control, 2011, 17(5): 449-471[2] Himmelblau D M. Accounts of experiences in the application of artificial neural networks in chemical engineering. Industrial and Engineering Chemistry Research, 2008, 47(16): 5782-5796[3] Wang L X. Adaptive Fuzzy Systems and Control: Design and Stability Analysis. New Jersey: Prentice-Hall, 1994.[4] Scholkopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press, 2002.[5] Suykens J A K, van Gestel T, de Brabanter J, De Moor B, Vandewalle J. Least Squares Support Vector Machines. Singapore: World Scientific, 2002.[6] Rojo-Alvarez J L, Martinez-Ramon M, de Prado-Cumplido M, Artes-Rodriguez A, Figueiras-Vidal A R. Support vector method for robust ARMA system identification. IEEE Transactions on Signal Processing, 2004, 52(1): 155-164[7] Toivonen H T, Totterman S, Akesson B. Identification of state-dependent parameter models with support vector regression. International Journal of Control, 2007, 80(9): 1454-1470[8] Totterman S, Toivonen H T. Support vector method for identification of Wiener models. Journal of Process Control, 2009, 19(7): 1174-1181[9] Li C H, Zhu X J, Cao G Y, Sui S, Hu M R. Identification of the Hammerstein model of a PEMFC stack based on least squares support vector machines. Journal of Power Sources, 2008, 175(1): 303-316[10] Wang H, Pi D Y, Sun Y X. Online SVM regression algorithm-based adaptive inverse control. Neurocomputing, 2007, 70(3): 952-959[11] Tang H S, Xue S T, Chen R, Sato T. Online weighted LS-SVM for hysteretic structural system identification. Engineering Structures, 2006, 28(12): 1728-1735[12] Liu Y, Wang H Q, Yu J, Li P. Selective recursive kernel learning for online identification of nonlinear systems with NARX form. Journal of Process Control, 2010, 20(2): 181-194[13] Cheng C, Chiu M S. A new data-based methodology for nonlinear process modeling. Chemical Engineering Science, 2004, 59(13): 2801-2810[14] Pan T H, Li S Y, Cai W J. Lazy learning-based online identification and adaptive PID control: a case study for CSTR process. Industrial and Engineering Chemistry Research, 2007, 46(2): 472-480[15] Liu Yi. Research on Kernel Learning Adaptive Modeling and Control for Industrial Batch Processes [Ph.D. dissertation], Zhejiang University, China, 2009(刘毅. 间歇过程的核学习自适应建模与控制研究及工业应用 [博士学位论文]. 浙江大学, 中国, 2009)[16] Fujiwara K, Kano M, Hasebe S, Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE Journal, 2009, 55(7): 1754-1765[17] Liu Y Q, Huang D P, Li Y. Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor. Industrial and Engineering Chemistry Research, 2012, 51(8): 3356-3367[18] Ge Z Q, Song Z H. A comparative study of just-in-time-learning based methods for online soft sensor modeling. Chemometrics and Intelligent Laboratory Systems, 2010, 104(2): 306-317[19] Golub G H, van Loan C F. Matrix Computations. Baltimore: The John Hopkins University Press, 1996.[20] Nikravesh M, Farell A E, Stanford T G. Control of nonisothermal CSTR with time varying parameters via dynamic neural network control (DNNC). Chemical Engineering Journal, 2000, 76(1): 1-16[21] Gao Z W, Dai X W, Breikin T, Wang H. Novel parameter identification by using a high-gain observer with application to a gas turbine engine. IEEE Transactions on Industrial Informatics, 2008, 4(4): 271-279
|