[1]
|
Yin Feng, Wang Yao-Nan, Wei Shu-Ning. Inverse kinematic solution for robot manipulator based on electromagnetism-like and modified DFP algorithms. Acta Automatica Sinica, 2011, 37(1): 74-82(印峰, 王耀南, 魏书宁. 基于类电磁和改进DFP算法的机械手逆运动学计算. 自动化学报, 2011, 37(1): 74-82)[2] Zhao Dong-Ya, Li Shao-Yuan, Gao Feng. Decentralized robust nonlinear control for six-degrees-of-freedom parallel robots. Control Theory Applications, 2008, 25(5): 867-872 (赵东亚, 李少远, 高峰. 六自由度并联机器人分散鲁棒非线性控制. 控制理论与应用, 2008, 25(5): 867-872)[3] Astolfi A, Karagiannis D, Ortega R. Nonlinear and Adaptive Control with Applications. Berlin: Springer-Verlag, 2008. 91-114[4] Nicosia S, Tomei P. Robot control by using only joint position measurements. IEEE Transactions on Automatic Control, 1990, 35(9): 1058-1061[5] Venkatraman A, Ortega R, Sarras I, Van der Schaft A J. Speed observation and position feedback stabilization of partially linearizable mechanical systems. IEEE Transactions on Automatic Control, 2010, 55(5): 1059-1074[6] Venkatraman A, Van der Schaft A J. Full-order observer design for a class of port-Hamiltonian systems. Automatica, 2010, 46(3): 555-561[7] Yin Zheng-Nan, Su Jian-Bo, Liu Yan-Tao. Design of disturbance observer with robust performance based on H∞ norm optimization. Acta Automatica Sinica, 2011, 37(3): 331-341 (尹正男, 苏剑波, 刘艳涛. 基于H∞范数优化的干扰观测器的鲁棒设计. 自动化学报, 2011, 37(3): 331-341)[8] Wu Ai-Guo, Duan Guang-Ren. Dual Luenberger observer design for linear systems. Control Theory Applications, 2008, 25(3): 583-586(吴爱国, 段广仁. 线性系统对偶Luenberger 观测器设计. 控制理论与应用, 2008, 25(3): 583-586)[9] Aghannan N, Rouchon P. An intrinsic observer for a class of Lagrangian systems. IEEE Transactions on Automatic Control, 2003, 48(6): 936-945[10] Bonnabel S, Martin P, Rouchon P. Symmetry-preserving observers. IEEE Transactions on Automatic Control, 2008, 53(11): 2514-2526[11] Xian B, de Queiroz M S, Dawson D M, McIntyre M L. A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems. Automatica, 2004, 40(4): 695-700[12] Su Y X, Muller P C, Zhang C H. A simple nonlinear observer for a class of uncertain mechanical systems. IEEE Transactions on Automatic Control, 2007, 52(7): 1340-1345[13] Karagiannis D, Carnevale D, Astolfi A. Invariant manifold based reduced-order observer design for nonlinear systems. IEEE Transactions on Automatic Control, 2008, 53(11): 2602-2614[14] Astolfi A, Ortega R. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Transactions on Automatic Control, 2003, 48(4): 590-606[15] Astolfi A, Ortega R, Venkatraman A. A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints. Automatica, 2010, 46(1): 182-189[16] Stamnes N, Aamo O M, Kaasa G O. A constructive speed observer design for general Euler-Lagrange systems. Automatica, 2011, 47(10): 2233-2238[17] Astolfi A, Ortega R, Venkatraman A. A globally exponentially convergent immersion and invariance speed observer for n degrees of freedom mechanical systems. In: Proceedings of the 48th Conference on Decision and Control. Shanghai, China: IEEE, 2009. 6508-6513[18] Karagiannis D, Astolfi A. Observer design for a class of nonlinear systems using dynamic scaling with application to adaptive control. In: Proceedings of the 47th Conference on Decision and Control. Cancun, Mexico: IEEE, 2008. 2314-2319[19] Karagiannis D, Sassano M, Astolfi A. Dynamic scaling and observer design with application to adaptive control. Automatica, 2009, 45(12): 2883-2889[20] Sassano M, Carnevale D, Astolfi A. Observer design for range and orientation identification. Automatica, 2010, 46(8): 1369-1375[21] Wang Y Z, Li C W, Cheng D Z. Generalized Hamiltonian realization of time-invariant nonlinear systems. Automatica, 2003, 39(8): 1437-1443[22] Liu Yan-Hong, Li Chun-Wen, Wang Yu-Zhen. Decentralized excitation control of multi-machine multi-load power systems using Hamiltonian function method. Acta Automatica Sinica, 2009, 35(7): 919-925 (刘艳红, 李春文, 王玉振. 基于Hamilton函数方法的多机多负荷电力系统分散励磁控制. 自动化学报, 2009, 35(7): 919-925)[23] Wang Y Z, Cheng D Z, Ge S S. Approximate dissipative Hamiltonian realization and construction of local Lyapunov functions. Systems and Control Letters, 2007, 56(2): 141-149[24] Wang Y Z, Cheng D Z, Hu X M. Problems on time-varying port-controlled Hamiltonian systems: geometric structure and dissipative realization. Automatica, 2005, 41(4): 717-723[25] Xi Z R, Cheng D Z, Lu Q, Mei S W. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica, 2002, 38(3): 527-534[26] Van der Schaft A J. L2-Gain and Passivity Techniques in Nonlinear Control. Berlin: Springer, 2000[27] Wang Yu-Zhen. Generalized Hamiltonian Control System Theory—— Realization, Control and Application. Beijing: Science Press, 2007(王玉振. 广义Hamilton控制系统理论——实现, 控制与应用. 北京: 科学出版社, 2007)[28] Spong M W, Vidyasagar M. Robot Dynamics and Control. New York: Wiley, 1989
|