[1]
|
Bahl L R, Brown P F, de Souza P V, Mercer L R. Maximum mutual information estimation of hidden Markov model parameters for speech recognition. In: Proceedings of the 1986 IEEE International Conference on Acoustics, Speech, and Signal Processing. Tokyo, Japan: IEEE, 1986. 49-52[2] Povey D. Discriminative Training for Large Vocabulary Speech Recognition [Ph.D. dissertation], Cambridge University, USA, 2004[3] Povey D, Kingsbury B, Mangu L, Saon G, Soltau H, Zweig G. fMPE: discriminatively trained features for speech recognition. In: Proceedings of the 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing. Philadelphia, USA: IEEE, 2005. 961-964[4] Sha F, Saul L K. Large margin Gaussian mixture modeling for phonetic classification and recognition. In: Proceedings of the 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing. Toulouse, France: IEEE, 2006. 265-268[5] Sha F, Saul L K. Comparison of large margin training to other discriminative methods for phonetic recognition by hidden markov models. In: Proceedings of the 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing. Honolulu, USA: IEEE, 2007. 313-316[6] Povey D, Kanevsky D, Kingsbury B, Ramabhadran B, Sanon G, Visweswariah K. Boosted MMI for model and feature-space discriminative training. In: Proceedings of the 2008 IEEE International Conference on Acoustics, Speech, and Signal Processing. Las Vegas, USA: IEEE, 2008. 4057-4060[7] Fung P, Schultz T. Multilingual spoken language processing. IEEE Signal Processing Magazine, 2008, 25(3): 89-97[8] Schultz T, Waibel A. Language-independent and language-adaptive acoustic modeling for speech recognition. Speech Communication, 2001, 35(1-2): 31-51[9] Khler J. Multilingual phone models for vocabulary-independent speech recognition tasks. Speech Communication, 2001, 35(1-2): 21-30[10] Wang Z R, Topkara U, Schultz T, Waibel A. Towards universal speech recognition. In: Proceedings of the 4th IEEE International Conference on Multimodal Interfaces. Pittsburgh, USA: IEEE, 2002. 247-252[11] Qian Y M, Liu J. Phone modeling and combining discriminative training for mandarin-english bilingual speech recognition. In: Proceedings of the 2010 IEEE International Conference on Acoustics, Speech, and Signal Processing. Dallas, USA: IEEE, 2010. 4918-4921[12] Qian Y M, Liu J. Mandarin-English bilingual phone modeling and combining mpe based discriminative training for cross-language speech recognition. In: Proceedings of the 2010 International Symposium on Chinese Spoken Language Processing. Tainan, China: ISCA, 2010. 103-108[13] Young S, Evermann G, Gales M J F, Hain T, Kershaw D, Liu X A, Moore G, Odell J J, Ollason D, Povey D, Valtchev V, Woodland P. The HTK Book (for version 3.4). UK: Cambridge University Engineering Department, 2009[14] Stolcke A. SRILM--An extensible language modeling toolkit. In: Proceedings of the 2002 International Conference on Spoken Language Processing. Denver, USA: ISCA, 2002. 901-904[15] Zheng J, Cetin O, Hwang M Y, Lei X, Stolcke A, Morgan N. Combining discriminative feature, transform, and model training for large vocabulary speech recognition. In: Proceedings of the 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing. Honolulu, USA: IEEE, 2007. 633-636[16] Povey D, Woodland P C. Minimum phone error and I-smoothing for improved discriminative training. In: Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing. Orlando, USA: IEEE, 2002. 105-108[17] Fiscus J G. A post-processing system to yield reduced word error rates: recognizer output voting error reduction (rover). In: Proceedings of the 1997 IEEE Workshop on Automatic Speech Recognition and Understanding. Santa Barbara, USA: IEEE, 1997. 347-354[18] Xu H H, Zhu J, Wu G Y. An efficient multistage rover method for automatic speech recognition. In: Proceedings of the 2009 IEEE International Conference on Multimedia and Expo. Cancun, Mexico: IEEE, 2009. 894-897[19] Schlüter R, Müller B, Wessel F, Ney H. Interdependence of language models and discriminative training. In: Proceedings of the 1999 IEEE Workshop on Automatic Speech Recognition and Understanding. Keystone, CO: IEEE, 1999[20] Gillick L, Cox S J. Some statistical issues in the comparison of speech recognition algorithms. In: Proceedings of the 1989 IEEE International Conference on Acoustics, Speech, and Signal Processing. Glasgow, Scotland: IEEE, 1989. 532-535
|