2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工业垂域具身智控大模型构建新范式探索

陈致蓬 韩杰 阳春华 桂卫华

陈致蓬, 韩杰, 阳春华, 桂卫华. 工业垂域具身智控大模型构建新范式探索. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250247
引用本文: 陈致蓬, 韩杰, 阳春华, 桂卫华. 工业垂域具身智控大模型构建新范式探索. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250247
Chen Zhi-Peng, Han Jie, Yang Chun-Hua, Gui Wei-Hua. An exploration of a new paradigm for constructing industrial domain-specific embodied intelligent control large models. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250247
Citation: Chen Zhi-Peng, Han Jie, Yang Chun-Hua, Gui Wei-Hua. An exploration of a new paradigm for constructing industrial domain-specific embodied intelligent control large models. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250247

工业垂域具身智控大模型构建新范式探索

doi: 10.16383/j.aas.c250247 cstr: 32138.14.j.aas.c250247
基金项目: 国家重点研发计划 (2024YFC3908002), 国家自然科学基金面上项目 (62273359, 62373377), 国家自然科学基金重大项目 (62394340), 湖南省青年骨干教师培养对象项目 (206030802), 湖南省教育厅研究生教改项目 (2024JGYB021)资助
详细信息
    作者简介:

    陈致蓬:中南大学自动化学院副教授. 主要研究方向为工业大模型, 工业仿真与数字孪生和新型工业互联网. E-mail: ZP.Chen@csu.edu.cn

    韩杰:中南大学自动化学院硕士研究生. 主要研究方向为大模型技术和计算机图像识别. E-mail: hjiecsu@csu.edu.cn

    阳春华:中南大学自动化学院教授. 主要研究方向为过程建模与优化控制, 流程工业智能优化制造. 本文通信作者. E-mail: ychh@csu.edu.cn

    桂卫华:中南大学自动化学院教授. 主要研究方向为复杂工业过程建模和故障诊断与分布式鲁棒控制. E-mail: gwh@csu.edu.cn

  • 中图分类号: Y

An Exploration of a New Paradigm for Constructing Industrial Domain-Specific Embodied Intelligent Control Large Models

Funds: Supported by the National Key Research and Development Program of China (2024YFC3908002), National Natural Science Foundation of China General Program (62273359, 62373377), Major projects of National Natural Science Foundation of China (62394340), Hunan Province Young Backbone Teacher Training Program (206030802), and Hunan Provincial Department of Education Graduate Education Reform Program (2024JGYB021)
More Information
    Author Bio:

    CHEN Zhi-Peng Associate professor at the School of Automation, Central South University. His research interest covers industrial large models, industrial simulation and digital twins and new industrial internet

    HAN Jie Master student at the School of Automation, Central South University. His research interest covers large model technology and computer image recognition

    YANG Chun-Hua Professor at the School of Automation, Central South University. Her research interest covers process modeling and optimal control, intelligent optimization manufacturing in process industries. Corresponding author of this paper

    GUI Wei-Hua Professor at the School of Automation, Central South University. His research interest covers complex industrial process modeling, fault diagnosis and distributed robust control

  • 摘要: 大模型工业垂域化是通用智能迈向专业化应用的必然趋势, 更是驱动工业智能化转型的核心引擎. 然而, 大模型在工业领域应用, 面临难以洞察工业时序数据内涵、难以嵌入工业物理化学规律、难以确保模型输出可信度、难以解决复杂工业问题等挑战. 针对上述瓶颈, 提出工业垂域具身智控大模型构建范式: 创新性引入时序数据元模型化方法, 将工业时序数据转换为代码语义, 提升大模型对时序数据的理解与推理能力; 借助元模型构建工业规律知识图谱, 并将其嵌入大模型生成过程, 以确定性科学原理抑制生成随机性; 构建数字孪生与实物伴生的双轨验证平台, 通过虚实具身反馈机制, 实时强化学习, 优化模型输出可信度; 设计融合知识图谱规则评分与虚实验证专家评分的混合奖励函数, 结合自适应学习与长度正则化策略, 克服大模型解决复杂问题时“趋易畏难”倾向; 最终形成一个集垂域适配、具身控制、可信验证、具身反馈于一体的四层闭环架构. 应用于有色冶金领域, 构建了首个有色冶金具身智控大模型, 实验验证了该范式的有效性, 为大模型从实验室走向工业现场, 架起了从技术到落地的桥梁.
  • 图  1  大模型学习自然语言与时序数据对比

    Fig.  1  Comparison of large models learning natural language and time-series data

    图  2  大模型随机性与物理化学规律确定性冲突

    Fig.  2  The randomness of large models conflicts with the determinism of physical and chemical laws

    图  3  大模型低置信度分析与现有解决方案

    Fig.  3  Low confidence analysis of large models and existing solutions

    图  4  大模型工业偏见分析

    Fig.  4  Industrial bias analysis of large models

    图  5  工业垂域具身智控大模型体系架构

    Fig.  5  Architecture for embodied intelligent control large model in industrial vertical domains

    图  6  有色冶金具身智控大模型总体框架

    Fig.  6  Overall framework of embodied intelligent smelting largemodel for nonferrous metallurgy

    图  7  MODELING元建模方法

    Fig.  7  MODELING meta-modeling method

    图  8  工业数据预处理算法流程

    Fig.  8  Industrial data preprocessing algorithm flow

    图  9  工业机理信息监督微调算法框架

    Fig.  9  Industrial mechanism information supervised fine-tuning algorithm framework

    图  10  奖励模型训练

    Fig.  10  Reward model training

    图  11  COT训练数据

    Fig.  11  COT training data

    图  12  强化微调框架图

    Fig.  12  Reinforcement fine-tuning framework diagram

    图  13  有色冶金元模型库

    Fig.  13  Non-ferrous metallurgical meta-model library

    图  14  有色冶金专家知识图谱

    Fig.  14  Nonferrous metallurgy expert knowledge graph

    图  15  数字孪生验证平台

    Fig.  15  Digital twin validation platform

    图  16  有色冶金实物伴生平台

    Fig.  16  Non-ferrous metallurgical mirrored physical platform

    图  17  有色冶金具身智控大模型

    Fig.  17  Embodied intelligent smelting large model for nonferrous metallurgy

    图  18  模型生成问题思维导图对比

    Fig.  18  Comparison of model-generated mind maps

    图  19  智控大模型与通用模型及传统控制算法效果对比

    Fig.  19  Performance comparison of intelligent metallurgical large model vs. general models and traditional control algorithms

    图  20  模型输出自适应PID控制参数变化

    Fig.  20  Model output adaptive PID control parameter variations.

    图  21  模型训练各阶段控制效果对比

    Fig.  21  Comparison of control effectiveness at different stages of model training

    图  22  不同数据集泛化性比较

    Fig.  22  Generalization comparison across different datasets

    图  23  大模型性能指标比较

    Fig.  23  Large model performance metrics comparison

    表  1  控制方法指标比较

    Table  1  Comparison of control method metrics

    指标 PID 垂域大模型
    最大调节时间/min 11.3 6.7
    平均调节时间/min 10.9 4.8
    最大超调量/% 3.73 2.37
    平均超调量/% 3.24 2.26
    最大稳态误差/℃ 9.1 8.4
    平均稳态误差/℃ 8.0 7.8
    最大偏差/℃ 42.4 31.3
    平均偏差/℃ 35.1 24.2
    下载: 导出CSV

    表  2  平台运行指标比较

    Table  2  Comparison of control platform performance

    指标 垂域模型部署前 垂域模型部署后
    平均故障率 (%) 14.0 6.5
    平均控制精度误差 (%) 5.0 3.7
    大模型覆盖工序率 (%) / 95.0
    运行参数达标率 (%) 87.2 93.5
    下载: 导出CSV
  • [1] Brown T, Mann B, Ryder N, et al. Language models are few-shot learners. Advances in neural information processing systems, Virtual Conference: Curran Associates, Inc, 2020, 33: 1877-1901
    [2] Xiong L, Wang H, Chen X, et al. DeepSeek: Paradigm shifts and technical evolution in large AI models. IEEE/CAA J. Autom. Sinica, 2025, 12(5): 841−858 doi: 10.1109/JAS.2025.125495
    [3] 缪青海, 王兴霞, 杨静, 等. 从基础智能到通用智能: 基于大模型的GenAI和AGI之现状与展望. 自动化学报, 2024, 50(4): 674−687

    Miao Q, Wang X, Yang J, et al. From foundation intelligence to general intelligence: The state-of-art and perspectives of GenAI and AGI based on foundation models. Acta Automatica Sinica, 2024, 50(4): 674−687
    [4] Liu A, Feng B, Xue B, et al. Deepseek-v3 technical report. arXiv preprint arXiv: 2412.19437, 2024
    [5] Shao Z, Wang P, Zhu Q, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv preprint arXiv: 2402.03300, 2024
    [6] 车万翔, 窦志成, 冯岩松, 等. 大模型时代的自然语言处理: 挑战, 机遇与发展. 中国科学: 信息科学, 2023, 53(9): 1645−1687 doi: 10.1360/SSI-2023-0113

    Che W, Dou Z, Feng Y, et al. Natural language processing in the era of large models: Challenges, opportunities and development. Scientia Sinica Informationis, 2023, 53(9): 1645−1687 doi: 10.1360/SSI-2023-0113
    [7] 任磊, 王海腾, 董家宝, 等. 工业大模型: 体系架构, 关键技术与典型应用. 中国科学: 信息科学, 2024, 54(11): 2606−2622 doi: 10.1360/SSI-2024-0185

    Ren L, Wang H T, Dong J, et al. Industrial large models: Architecture, key technologies and typical applications. Scientia Sinica Informationis, 2024, 54(11): 2606−2622 doi: 10.1360/SSI-2024-0185
    [8] Wei J, Tay Y, Bommasani R, et al. Emergent abilities of large language models. arXiv preprint arXiv: 2206.07682, 2022
    [9] Wen X, Zhang H, Zheng S, et al. From supervised to generative: A novel paradigm for tabular deep learning with large language models. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Barcelona, Spain: ACM, 2024: 3323-3333
    [10] Norheim J J, Rebentisch E, Xiao D, et al. Challenges in applying large language models to requirements engineering tasks. Design Science, 2024, 10: e16 doi: 10.1017/dsj.2024.8
    [11] Raza M, Jahangir Z, Riaz M B, et al. Industrial applications of large language models. Scientific Reports, 2025, 15(1): Article No. 13755 doi: 10.1038/s41598-025-98483-1
    [12] Wang R, Wu Z, Weng Z, et al. Cross-domain contrastive learning for unsupervised domain adaptation. IEEE Transactions on Multimedia, 2022, 25: 1665−1673
    [13] Wu J, Wang Z, Hong M, et al. Medical sam adapter: Adapting segment anything model for medical image segmentation. Medical Image Analysis, 2025, 102: 103547 doi: 10.1016/j.media.2025.103547
    [14] Diao S, Wang P, Lin Y, et al. Active prompting with chain-of-thought for large language models. arXiv preprint arXiv: 2302.12246, 2023
    [15] Zhang Z, Han X, Liu Z, et al. ERNIE: Enhanced language representation with informative entities. arXiv preprint arXiv: 1905.07129, 2019
    [16] He B, Zhou D, Xiao J, et al. Integrating graph contextualized knowledge into pre-trained language models. arXiv preprint arXiv: 1912.00147, 2019
    [17] Callewaert B, Vandevelde S, Vennekens J. VERUS-LM: a Versatile Framework for Combining LLMs with Symbolic Reasoning. arXiv preprint arXiv: 2501.14540, 2025
    [18] Tassa Y, Doron Y, Muldal A, et al. Deepmind control suite. arXiv preprint arXiv: 1801.00690, 2018
    [19] Lewis P, Perez E, Piktus A, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, Virtual Conference, Curran Associates, Inc, 2020, 33: 9459-9474
    [20] Gao Y, Xiong Y, Gao X, et al. Retrieval-augmented generation for large language models: A survey. arXiv preprint arXiv: 2312.10997, 2023
    [21] Jiang Z, Xu F F, Gao L, et al. Active retrieval augmented generation. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Sentosa Island, Singapore: ACL, 2023: 7969-7992
    [22] Guo Y, Cheng Z, Zhang J, et al. A review on adversarial–based deep transfer learning mechanical fault diagnosis. Journal of Big Data, 2024, 11(1): 151 doi: 10.1186/s40537-024-01006-4
    [23] Sun D, Fan Y, Wang G. Enhancing Fault Diagnosis in Industrial Processes through Adversarial Task Augmented Sequential Meta-Learning. Applied Sciences, 2024, 14(11): 4433 doi: 10.3390/app14114433
    [24] Zhang Z, Zhang A, Li M, et al. Automatic chain of thought prompting in large language models. arXiv preprint arXiv: 2210.03493, 2022
    [25] Moor M, Huang Q, Wu S, et al. Med-flamingo: a multimodal medical few-shot learner. Machine Learning for Health, Hawaii, USA: PMLR, 2023: 353-367
    [26] Wang H, Li C, Li Y F, et al. An Intelligent Industrial Visual Monitoring and Maintenance Framework Empowered by Large-Scale Visual and Language Models. IEEE Transactions on Industrial Cyber-Physical Systems, 2024
    [27] Yang T, Feng P, Guo Q, et al. AutoHMA-LLM: Efficient Task Coordination and Execution in Heterogeneous Multi-Agent Systems Using Hybrid Large Language Models. IEEE Transactions on Cognitive Communications and Networking, 2025
    [28] Hong W, Wang W, Lv Q, et al. Cogagent: A visual language model for gui agents. Proceedings of the Conference on Computer Vision and Pattern Recognition, Seattle, USA: IEEE/CVF 2024: 14281-14290
    [29] Chen L, Lei Y, Jin S, et al. Rlingua: Improving reinforcement learning sample efficiency in robotic manipulations with large language models. IEEE Robotics and Automation Letters, 2024
    [30] Tan M, Merrill M, Gupta V, et al. Are language models actually useful for time series forecasting? Advances in Neural Information Processing Systems, Vancouver, Canada: Curran Associates, Inc, 2024, 37: 60162-60191
    [31] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Advances in Neural Information Processing Systems, California USA: Curran Associates, Inc, 2017, 30: 5998-6008
    [32] Huang L, Yu W, Ma W, et al. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information Systems, 2025, 43(2): 1−55
    [33] Zhou D, Xue X, Ma Q, et al. Federated experiments: Generative causal inference powered by LLM-based agents simulation and RAG-based domain docking. IEEE/CAA J. Autom. Sinica, 2024, 11(11): 1−4 doi: 10.1109/JAS.2024.124887
    [34] Liu Z, Chen C, Li W, et al. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv: 2503.20783, 2025
    [35] 阳春华, 刘一顺, 黄科科, 等. 有色金属工业智能模型库构建方法及应用. 中国工程科学, 2022, 24(4): 188−200

    Yang C, Liu Y, Huang K, et al. Intelligent Model Library for Nonferrous Metal Industry: Construction Method and Application. Engineering Science, 2022, 24(4): 188−200
    [36] Hu E J, Shen Y, Wallis P, et al. Lora: Low-rank adaptation of large language models. International Conference on Learning Representations, Virtual Conference: ICLR, 2022, 1(2): Article No. 3
    [37] Hu Z, Wang L, Lan Y, et al. LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Sentosa Island, Singapore: ACL, 2023. 5254-5276
    [38] Luo W, Yang C, Liang X, et al. Digital twin driven soft sensing for key variables in zinc rotary kiln. IEEE Transactions on Industrial Informatics, 2024, 20(4): 6673−6683 doi: 10.1109/TII.2023.3342443
    [39] Liu J, Jiang Z, Gui W, et al. Digital Twin Modeling and Transformer Prediction-Based Overall Particle Size Distribution Online Estimation. 2023 China Automation Congress, Chongqing, China: IEEE, 2023: 757-762
    [40] Luo W, Huang K, Liang X, et al. Process Manufacturing Intelligence Empowered by Industrial Metaverse: A Survey. IEEE Transactions on Cybernetics, 2024, 54(11): 6679−6692 doi: 10.1109/TCYB.2024.3420958
    [41] Wei J, Wang X, Schuurmans D, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information Processing Systems, New Orleans, USA: Curran Associates, Inc, 2022, 35: 24824-24837
    [42] Yasunaga M, Bosselut A, Ren H, et al. Deep bidirectional language-knowledge graph pretraining. Advances in Neural Information Processing Systems, New Orleans, USA: Curran Associates, Inc, 2022, 35: 37309-37323
    [43] Zhang Q, Dong J, Chen H, et al. KnowGPT: Knowledge graph based prompting for large language models. Advances in Neural Information Processing Systems, Vancouver, Canada: Curran Associates, Inc, 2024, 37: 6052-6080
  • 加载中
计量
  • 文章访问数:  11
  • HTML全文浏览量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-09
  • 录用日期:  2025-08-11
  • 网络出版日期:  2025-09-19

目录

    /

    返回文章
    返回