2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合动力电推进系统能量管理与分层优化控制策略研究

李建奇 孙健 杨涛 曹斌芳 唐一文 鲁建权

李建奇, 孙健, 杨涛, 曹斌芳, 唐一文, 鲁建权. 混合动力电推进系统能量管理与分层优化控制策略研究. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250174
引用本文: 李建奇, 孙健, 杨涛, 曹斌芳, 唐一文, 鲁建权. 混合动力电推进系统能量管理与分层优化控制策略研究. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250174
Li Jian-Qi, Sun Jian, Yang Tao, Cao Bin-Fang, Tang Yi-Wen, Lu Jian-Quan. Research on energy management and hierarchical optimization control strategy for hybrid electric propulsion system. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250174
Citation: Li Jian-Qi, Sun Jian, Yang Tao, Cao Bin-Fang, Tang Yi-Wen, Lu Jian-Quan. Research on energy management and hierarchical optimization control strategy for hybrid electric propulsion system. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250174

混合动力电推进系统能量管理与分层优化控制策略研究

doi: 10.16383/j.aas.c250174 cstr: 32138.14.j.aas.c250174
基金项目: 国家自然科学基金(62273142), 湖南省自然科学基金(2023JJ30437, 2023JJ50052), 湖南省教育厅科学研究项目(23A0498) 资助
详细信息
    作者简介:

    李建奇:分布式电推进飞行器控制技术湖南省重点实验室教授. 主要研究方向为飞行器能量管理与变换控制技术, 传感与检测技术. E-mail: jianqi_li@126.com

    孙健:分布式电推进飞行器控制技术湖南省重点实验室讲师. 主要研究方向为飞行器能量管理技术. 本文通信作者. E-mail: hnwlsj0108@huas.edu.cn

    杨涛:英国诺丁汉大学教授. 主要研究方向为电力电子技术, 电机与控制技术. E-mail: tao.yang@nottingham.ac.uk

    曹斌芳:分布式电推进飞行器控制技术湖南省重点实验室教授.主要研究方向为传感与检测技术, 信号处理技术. E-mail: cao_bf@163.com

    唐一文:分布式电推进飞行器控制技术重点湖南省实验室讲师.主要研究方向为多电飞机技术, 电机控制技术.E-mail: tangyiwen@foxmail.com

    鲁建权:分布式电推进飞行器控制技术湖南省重点实验室博士研究生.主要研究方向为飞行器控制技术. E-mail: luffyzik@gmail.com

Research on Energy Management and Hierarchical Optimization Control Strategy for Hybrid Electric Propulsion System

Funds: Supported by National Natural Science Foundation of China (62273142), Hunan Provincial Natural Science Foundation (2023JJ30437, 2023JJ50052), and Scientific Research Project of the Hunan Provincial Department of Education (23A0498)
More Information
    Author Bio:

    LI Jian-Qi Professor at the Hunan Provincial Key Laboratory of Distributed Electric Propulsion Vehicle Control Technology. His research interest cover aircraft energy management and conversion control technology, sensing and detection technology

    SUN Jian Lecturer at the Hunan Provincial Key Laboratory of Distributed Electric Propulsion Vehicle Control Technology. His research interest cover microgrid operation, energy conversion and electrical control technology

    YANG Tao Professor at the University of Nottingham, UK. His research interest cover power electronics technology, motor and control technology

    CAO Bin-Fang Professor at the Hunan Provincial Key Laboratory of Distributed Electric Propulsion Vehicle Control Technology. Her research interest cover sensing and detection technology and signal processing technology

    TANG Yi-Wen Lecturer at the Hunan Provincial Key Laboratory of Distributed Electric Propulsion Vehicle Control Technology. His research interest cover MEA technology and motor control technology

    LU Jian-Quan Ph.D. Candidate at the Hunan Provincial Key Laboratory of Distributed Electric Propulsion Vehicle Control Technology. His research interest cover aircraft control technology

  • 摘要: 为了提高混合动力飞行器经济性并改善动力系统的动态性能, 提出一种混合动力分层控制的能量管理策略. 首先, 在顶层提出基于改进等效燃油消耗最小化的能量管理策略, 根据发电机组的燃油消耗特性、储能电池组的荷电状态以及等效惩罚因子动态调整发电机组的最优工作曲线, 从而获得最佳的燃油经济性. 在底层提出一种基于电流反馈的改进下垂控制策略, 负责管理电池组的充放电状态和维持直流母线电压的动态平衡, 同时实现飞行器的经济性与动态响应的协同控制, 达到对混合电推进飞行器能量的动态优化管理的目的. 最后, 通过基于RT-LAB的混合动力系统硬件在环实验平台验证该能量管理策略的有效性.
  • 图  1  串联式混合动力系统结构图

    Fig.  1  Serial hybrid power system structure diagram

    图  2  储能电池等效电路

    Fig.  2  Equivalent circuit of energy storage battery

    图  3  母线下垂特性

    Fig.  3  Bus droop characteristics

    图  4  储能电池控制框图

    Fig.  4  Control block diagram of energy storage battery

    图  5  永磁同步发电系统控制框图

    Fig.  5  Control Block Diagram of PMSG

    图  6  惩罚函数

    Fig.  6  Penalty function

    图  7  储能电池的等效燃油消耗

    Fig.  7  Equivalent fuel consumption of energy storage battery

    图  8  发电机组的最佳工作曲线

    Fig.  8  Optimal working curve of generator set

    图  9  混合动力系统硬件在环实验平台

    Fig.  9  Hybrid power system hardware in the loop experiment platform

    图  10  本文所提能量管理方法

    Fig.  10  The energy management method proposed in this paper

    图  11  SOC状态划分

    Fig.  11  SOC status division

    图  12  场景1: 初始SOC为35%, 45%

    Fig.  12  Scenario 1: Initial SOC is 35%, 45%.

    图  13  场景2: 初始SOC为50%, 60%

    Fig.  13  Scenario 2: Initial SOC is 50%、60%.

    图  14  场景3: 初始SOC为85%、95%.

    Fig.  14  Scenario 3: Initial SOC is 85%、95%.

    图  15  直流母线电压

    Fig.  15  DC Bus Voltage

    表  1  实验参数

    Table  1  1 Experimental parameter

    子系统描述
    储能电池组储能电池额定电压100 V
    储能电池额定容量36 Ah
    储能电池组初始SOC0.35、0.45;
    0.5、0.6;
    0.8、0.9
    发电机组发电机组功率上界15 kW
    发电机组功率下界5 kW
    发电机组最优功率输出10 kW
    负载系统母线电压270 V
    负载9-15 kW
    下载: 导出CSV

    表  2  基于状态机的能量管理方法

    Table  2  2 Energy management method based on state machine

    状态 SOC 水平 特征 运行模式
    1 Low $ {P_{load}} \le {{{P}}_{{{opt - effi}}}} $ $ {P_{{{en}}}}{{ = }}{{{P}}_{{{opt - effi}}}} $$ {P_{{{bat}}}}{{ = }}{{{P}}_{{{load}}}}{{ - }}{{{P}}_{{{opt - effi}}}} $
    2 Low $ {P_{load}} > {{{P}}_{{{opt - effi}}}} $ $ {P_{{{en}}}}{{ = }}{P_{load}} $
    $ {P_{{{bat}}}}{{ = }}0 $
    3 Middle $ {P_{load}} \le {{{P}}_{{{opt - effi}}}} $ $ {P_{{{en}}}}{{ = }}{{{P}}_{{{opt - effi}}}} $
    $ {P_{{{bat}}}}{{ = }}{{{P}}_{{{load}}}}{{ - }}{{{P}}_{{{opt - effi}}}} $
    4 Middle $ {P_{load}} > {{{P}}_{{{opt - effi}}}} $ $ {P_{{{en}}}}{{ = }}{{{P}}_{{{opt - effi}}}} $$ {P_{{{bat}}}}{{ = }}{{{P}}_{{{load}}}}{{ - }}{{{P}}_{{{opt - effi}}}} $
    5 High $ {P_{load}} \le {{{P}}_{{{opt - effi}}}} $ $ {P_{{{en}}}}{{ = }}{P_{load}} $
    $ {P_{{{bat}}}}{{ = }}0 $
    6 High $ {P_{load}} > {{{P}}_{{{opt - effi}}}} $ $ {P_{{{en}}}}{{ = }}{{{P}}_{{{opt - effi}}}} $
    $ {P_{{{bat}}}}{{ = }}{{{P}}_{{{load}}}}{{ - }}{{{P}}_{{{opt - effi}}}} $
    下载: 导出CSV

    表  3  不同方法性能比较

    Table  3  Performance comparison of different methods

    方法场景燃油消耗/kgSOC1SOC2
    本文
    所提
    14.780.310.335
    24.350.330.365
    34.180.380.41
    ECMS14.90.2820.325
    24.550.2830.326
    34.410.2880.325
    状态机15.010.3990.399
    24.690.3990.398
    34.420.3990.399
    下载: 导出CSV
  • [1] Zhang J, Roumeliotis I, Zolotas A. Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy. Energy, 2022, 245: 23239
    [2] Bergero C, Candelaria G. Pathways to net-zero emissions from aviation. Nature Sustainability, 2023, 6(4): 404−414 doi: 10.1038/s41893-022-01046-9
    [3] Li S Q, Gu C H, Xu M H, Li J W, Zhao P F, Shuang C. Optimal power system design and energy management for more electric aircrafts. Journal of Power Sources, 2021, 512(4): 230473
    [4] Wheeler P, Sirimanna T S, Bozhko S. Electric/hybrid-electric aircraft propulsion systems. Proceedings of the IEEE, 2021, 109(6): 1115−1127 doi: 10.1109/JPROC.2021.3073291
    [5] 宗建安. 飞行器混联式全电推进系统设计与能量管理研究. 国防科技大学, 2021

    Zong Jian-An. Design and Energy Management of hybrid all-electric propulsion system for aircraft [Master dissertation], National University of Defense Technology, China, 2021
    [6] Thonemann N, Eleonore P, Katarzyna M D, Karen S R, Anna Lia S. Tromer D, et al. Towards sustainable regional aviation: Environmental potential of hybrid-electric aircraft and alternative fuels. Sustainable Production and Consumption, 2024, 45: 371−385 doi: 10.1016/j.spc.2024.01.013
    [7] 张冬晓, 陈亚洲, 程二威, 高书坤. 适用于无人机数据链电磁干扰自适应的环境监测系统. 高电压技术, 2020, 46(6): 2106−2113

    Zhang Dong-Xiao, Chen Ya-Zhou, Cheng Er-Wei, Gao Shu-Kun. Environmental monitoring system suitable for electromagnetic interference adaptation of UAV's datalink. High Voltage Engineering, 2020, 46(6): 2106−2113
    [8] 赵兴科, 李明磊, 张弓, 黎宁, 李家松. 基于显著图融合的无人机载热红外图像目标检测方法. 自动化学报, 2021, 47(9): 2120−2131

    Zhao Xing-Ke, Li Ming-Lei, Zhang Gong, Li Ning, Li Jia-Song. Object detection method based on saliency map fusion for UAV-borne thermal images. Acta Automatica Sinica, 2021, 47(9): 2120−2131
    [9] 肖友刚, 满香娜, 伍国华, 罗启章. 考虑地形起伏的机载SAR测绘航线规划方法. 航空学报, 2023, 44(17): 218-234

    Xiao You-Gang, Man Xiang-Na, Wu Guo-Hua, Luo Qi-Zhang. Surveying and mapping path planning method for UAV-borne SAR considering terains. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 328143-328143
    [10] 向锦武, 董希旺, 丁文锐, 索津莉, 沈林成. 复杂环境下无人集群系统自主协同关键技术. 航空学报, 2022, 43(10): 333-365

    Xiang Jin-Wu, Dong Xi-Wang, Ding Wen-Rui, Suo Jin-Li, Shen Lin-Cheng, Xia Hui. Key technologies for autonomous cooperation of unmanned swarm systems in complex environments. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527570-527570
    [11] Skraparlis A N, Nathanasios K S, Klimis S N, Tsapatsoulis N. A novel framework to intercept GPS-denied, bomb-carrying, non-military, kamikaze drones: Towards protecting critical infrastructures. Defence Technology, 2024, 40: 225−241 doi: 10.1016/j.dt.2024.05.001
    [12] 孔武斌, 刘迪, 范兴纲, 裴雪军, 郝圣桥, 崔颖, 等. 航空发动机多电控制系统源-网-荷架构与关键技术. 航空学报, 2025, 46(2): 6−44

    Kong Wu-Bin, Liu Di, Fan Xing-Gang, Pei Xue-Jun, Hao Sheng-Qiao, Cui Ying, et al. Source-grid-load architecture and key technologies of aero-engine multi-electrical control system. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 6−44.
    [13] 刘佩松. 基于预测控制的多电航空发动机能量管理研究. 南京航空航天大学, 2021

    Liu Pei-Song. Research on energy management of multi-electric aero engines based on predictive control [Master dissertation], Nanjing University of Aeronautics and Astronautics, China, 2021
    [14] 赵秀春, 郭戈. 混合动力电动汽车的跟车控制与能量管理. 自动化学报, 2022, 48(1): 162−170

    Zhao Xiu-Chun, Guo Ge. Tracking control and energy management of hybrid electric vehicles. Acta Automatica Sinica, 2022, 48(1): 162−170
    [15] 朱炳杰, 朱莹涛, 李建奇. 混合电推进能源管理系统模糊逻辑控制. 国防科技大学学报, 2023, 45(6): 32−39

    Zhu Bing-Jjie, Zhu Ying-Tao, Li Jian-Qi. Fuzzy logic control for hybrid electric propulsion energy management system. Journal of National University of Defense Technology, 2023, 45(6): 32−39
    [16] Meng J H, Ma N, Meng F M, Zhang X H, Liu L. Energy management strategy of hybrid energy system for a multi-lobes hybrid air vehicle. Energy, 2022, 255: 124539. doi: 10.1016/j.energy.2022.124539
    [17] Sun J, Li Z W, Li J Q, Wu G P, Xia Y X. Hybrid power system with adaptive adjustment of weight coefficients multi-objective model predictive control. International Journal of Electrical Power & Energy Systems, 2023, 153: 109296.
    [18] 宋清超. 多电飞机混合供电系统的动态功率分配控制及大信号稳定性研究. 重庆大学, 2022

    Song Qing-Chao. Study on dynamic power distribution control and large signal stability of multi-electric aircraft hybrid power supply system [Ph. D. dissertation], Chongqing University, China, 2022
    [19] 程龙. 基于混合储能系统的多电飞机功率脉动平抑技术研究. 南京航空航天大学, 2020

    Cheng Long. Research on power ripple suppression technology of multi-electric aircraft based on hybrid energy storage system [Ph. D. dissertation], Nanjing University of Aeronautics and Astronautics, China, 2020
    [20] Hosseinipour A, Hojabri H. Small-signal stability analysis and active damping control of DC microgrids integrated with distributed electric springs. IEEE Transactions on Smart Grid, 2020, 11(5): 3737−3747 doi: 10.1109/TSG.2020.2981132
    [21] Li X, Wu X. Autonomous energy management strategy for a hybrid power system of more-electric aircraft based on composite droop schemes. International Journal of Electrical Power & Energy Systems, 2021, 129: 106828
    [22] Gao P, Li Y, Zheng X, Liu W, Yao W, Hua Z. A Decentralized Power Allocation Method Based on Virtual Impedance Droop Control for Pulsed Power Load in Aircraft Electrical Power System. IEEE Transactions on Transportation Electrification, 2024, 10(4): 9016−9030 doi: 10.1109/TTE.2024.3376594
    [23] Wen Q D, Zhang L S, Liang Z, Liang D L, Liang Y, Yang S Z. Optimized multi-timescale energy management strategy of a novel all-electric aircraft power system unit based on decentralized control. Journal of Energy Storage, 2023, 73: 108903 doi: 10.1016/j.est.2023.108903
    [24] Hussaini H, Yang T, Bai G. Artificial intelligence-based hierarchical control design for current sharing and voltage restoration in dc microgrid of the more electric aircraft. IEEE Transactions on Transportation Electrification, 2023, 10(1): 566−582
    [25] 刘建宏. 基于模糊控制的无人机增程式混合动力能量管理策略研究. 重庆交通大学, 2024

    Liu Jian-Hong. Research on energy management strategy of UAV extended-range hybrid power based on fuzzy control [Master dissertation], Chongqing Jiaotong University, China, 2024
    [26] 高锋阳, 张浩然. 氢燃料电池混合动力有轨电车的自适应瞬时等效能耗优化. 机械工程学报, 2023, 59(6): 226−238 doi: 10.3901/JME.2023.06.226

    Gao Feng-Yang, Zhang Hao-Ran. Adaptive instantaneous equivalent energy consumption optimization of hydrogen fuel cell hybrid electric tram. Journal of Mechanical Engineering, 2023, 59(6): 226−238 doi: 10.3901/JME.2023.06.226
    [27] Recalde A A, Atkin J A, Bozhko S V. Optimal design and synthesis of MEA power system architectures considering reliability specifications. IEEE transactions on Transportation Electrification, 2020, 6(4): 1801−1818 doi: 10.1109/TTE.2020.3002875
    [28] Han Y, Chen W, Li Q. Two-level energy management strategy for PV-Fuel cell-battery-based DC microgrid. International Journal of Hydrogen Energy, 2019, 44(35): 19395−19404 doi: 10.1016/j.ijhydene.2018.04.013
  • 加载中
计量
  • 文章访问数:  15
  • HTML全文浏览量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-23
  • 录用日期:  2025-08-09
  • 网络出版日期:  2025-10-28

目录

    /

    返回文章
    返回