Research on Energy Management and Hierarchical Optimization Control Strategy for Hybrid Electric Propulsion System
- 
					    摘要: 为了提高混合动力飞行器经济性并改善动力系统的动态性能, 提出一种混合动力分层控制的能量管理策略. 首先, 在顶层提出基于改进等效燃油消耗最小化的能量管理策略, 根据发电机组的燃油消耗特性、储能电池组的荷电状态以及等效惩罚因子动态调整发电机组的最优工作曲线, 从而获得最佳的燃油经济性. 在底层提出一种基于电流反馈的改进下垂控制策略, 负责管理电池组的充放电状态和维持直流母线电压的动态平衡, 同时实现飞行器的经济性与动态响应的协同控制, 达到对混合电推进飞行器能量的动态优化管理的目的. 最后, 通过基于RT-LAB的混合动力系统硬件在环实验平台验证该能量管理策略的有效性.Abstract: To enhance the economic efficiency and dynamic performance of hybrid aircraft, an energy management strategy based on hybrid-powered hierarchical control is proposed. At the upper layer, an advanced Energy Consumption Minimization Strategy is introduced, which dynamically adjusts the optimal operating curve of the generator set based on its fuel consumption characteristics, the state of charge (SOC) of the energy storage battery pack, and the equivalent penalty factor to achieve optimal fuel economy. At the lower layer, an enhanced droog control strategy incorporating current feedback is proposed. This strategy manages the charging and discharging states of the battery pack and maintains the dynamic balance of the DC bus voltage, thereby achieving cooperative control of economic efficiency and dynamic response. Consequently, it realizes dynamic optimization management of the energy in hybrid electric propulsion vehicles. Finally, the effectiveness of the proposed energy management strategy is validated through simulations and hardware-in-the-loop testing using an RT-LAB-based platform.
- 
						
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    表 1 实验参数 Table 1 1 Experimental parameter 子系统 描述 值 储能电池组 储能电池额定电压 100 V 储能电池额定容量 36 Ah 储能电池组初始SOC 0.35、0.45; 
 0.5、0.6;
 0.8、0.9发电机组 发电机组功率上界 15 kW 发电机组功率下界 5 kW 发电机组最优功率输出 10 kW 负载系统 母线电压 270 V 负载 9-15 kW 表 2 基于状态机的能量管理方法 Table 2 2 Energy management method based on state machine 状态 SOC 水平 特征 运行模式 1 Low $ {P_{load}} \le {{{P}}_{{{opt - effi}}}} $ $ {P_{{{en}}}}{{ = }}{{{P}}_{{{opt - effi}}}} $$ {P_{{{bat}}}}{{ = }}{{{P}}_{{{load}}}}{{ - }}{{{P}}_{{{opt - effi}}}} $ 2 Low $ {P_{load}} > {{{P}}_{{{opt - effi}}}} $ $ {P_{{{en}}}}{{ = }}{P_{load}} $ 
 $ {P_{{{bat}}}}{{ = }}0 $3 Middle $ {P_{load}} \le {{{P}}_{{{opt - effi}}}} $ $ {P_{{{en}}}}{{ = }}{{{P}}_{{{opt - effi}}}} $ 
 $ {P_{{{bat}}}}{{ = }}{{{P}}_{{{load}}}}{{ - }}{{{P}}_{{{opt - effi}}}} $4 Middle $ {P_{load}} > {{{P}}_{{{opt - effi}}}} $ $ {P_{{{en}}}}{{ = }}{{{P}}_{{{opt - effi}}}} $$ {P_{{{bat}}}}{{ = }}{{{P}}_{{{load}}}}{{ - }}{{{P}}_{{{opt - effi}}}} $ 5 High $ {P_{load}} \le {{{P}}_{{{opt - effi}}}} $ $ {P_{{{en}}}}{{ = }}{P_{load}} $ 
 $ {P_{{{bat}}}}{{ = }}0 $6 High $ {P_{load}} > {{{P}}_{{{opt - effi}}}} $ $ {P_{{{en}}}}{{ = }}{{{P}}_{{{opt - effi}}}} $ 
 $ {P_{{{bat}}}}{{ = }}{{{P}}_{{{load}}}}{{ - }}{{{P}}_{{{opt - effi}}}} $表 3 不同方法性能比较 Table 3 Performance comparison of different methods 方法 场景 燃油消耗/kg SOC1 SOC2 本文 
 所提1 4.78 0.31 0.335 2 4.35 0.33 0.365 3 4.18 0.38 0.41 ECMS 1 4.9 0.282 0.325 2 4.55 0.283 0.326 3 4.41 0.288 0.325 状态机 1 5.01 0.399 0.399 2 4.69 0.399 0.398 3 4.42 0.399 0.399 
- 
						[1] Zhang J, Roumeliotis I, Zolotas A. Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy. Energy, 2022, 245: 23239 [2] Bergero C, Candelaria G. Pathways to net-zero emissions from aviation. Nature Sustainability, 2023, 6(4): 404−414 doi: 10.1038/s41893-022-01046-9 [3] Li S Q, Gu C H, Xu M H, Li J W, Zhao P F, Shuang C. Optimal power system design and energy management for more electric aircrafts. Journal of Power Sources, 2021, 512(4): 230473 [4] Wheeler P, Sirimanna T S, Bozhko S. Electric/hybrid-electric aircraft propulsion systems. Proceedings of the IEEE, 2021, 109(6): 1115−1127 doi: 10.1109/JPROC.2021.3073291 [5] 宗建安. 飞行器混联式全电推进系统设计与能量管理研究. 国防科技大学, 2021Zong Jian-An. Design and Energy Management of hybrid all-electric propulsion system for aircraft [Master dissertation], National University of Defense Technology, China, 2021 [6] Thonemann N, Eleonore P, Katarzyna M D, Karen S R, Anna Lia S. Tromer D, et al. Towards sustainable regional aviation: Environmental potential of hybrid-electric aircraft and alternative fuels. Sustainable Production and Consumption, 2024, 45: 371−385 doi: 10.1016/j.spc.2024.01.013 [7] 张冬晓, 陈亚洲, 程二威, 高书坤. 适用于无人机数据链电磁干扰自适应的环境监测系统. 高电压技术, 2020, 46(6): 2106−2113Zhang Dong-Xiao, Chen Ya-Zhou, Cheng Er-Wei, Gao Shu-Kun. Environmental monitoring system suitable for electromagnetic interference adaptation of UAV's datalink. High Voltage Engineering, 2020, 46(6): 2106−2113 [8] 赵兴科, 李明磊, 张弓, 黎宁, 李家松. 基于显著图融合的无人机载热红外图像目标检测方法. 自动化学报, 2021, 47(9): 2120−2131Zhao Xing-Ke, Li Ming-Lei, Zhang Gong, Li Ning, Li Jia-Song. Object detection method based on saliency map fusion for UAV-borne thermal images. Acta Automatica Sinica, 2021, 47(9): 2120−2131 [9] 肖友刚, 满香娜, 伍国华, 罗启章. 考虑地形起伏的机载SAR测绘航线规划方法. 航空学报, 2023, 44(17): 218-234Xiao You-Gang, Man Xiang-Na, Wu Guo-Hua, Luo Qi-Zhang. Surveying and mapping path planning method for UAV-borne SAR considering terains. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 328143-328143 [10] 向锦武, 董希旺, 丁文锐, 索津莉, 沈林成. 复杂环境下无人集群系统自主协同关键技术. 航空学报, 2022, 43(10): 333-365Xiang Jin-Wu, Dong Xi-Wang, Ding Wen-Rui, Suo Jin-Li, Shen Lin-Cheng, Xia Hui. Key technologies for autonomous cooperation of unmanned swarm systems in complex environments. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527570-527570 [11] Skraparlis A N, Nathanasios K S, Klimis S N, Tsapatsoulis N. A novel framework to intercept GPS-denied, bomb-carrying, non-military, kamikaze drones: Towards protecting critical infrastructures. Defence Technology, 2024, 40: 225−241 doi: 10.1016/j.dt.2024.05.001 [12] 孔武斌, 刘迪, 范兴纲, 裴雪军, 郝圣桥, 崔颖, 等. 航空发动机多电控制系统源-网-荷架构与关键技术. 航空学报, 2025, 46(2): 6−44Kong Wu-Bin, Liu Di, Fan Xing-Gang, Pei Xue-Jun, Hao Sheng-Qiao, Cui Ying, et al. Source-grid-load architecture and key technologies of aero-engine multi-electrical control system. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 6−44. [13] 刘佩松. 基于预测控制的多电航空发动机能量管理研究. 南京航空航天大学, 2021Liu Pei-Song. Research on energy management of multi-electric aero engines based on predictive control [Master dissertation], Nanjing University of Aeronautics and Astronautics, China, 2021 [14] 赵秀春, 郭戈. 混合动力电动汽车的跟车控制与能量管理. 自动化学报, 2022, 48(1): 162−170Zhao Xiu-Chun, Guo Ge. Tracking control and energy management of hybrid electric vehicles. Acta Automatica Sinica, 2022, 48(1): 162−170 [15] 朱炳杰, 朱莹涛, 李建奇. 混合电推进能源管理系统模糊逻辑控制. 国防科技大学学报, 2023, 45(6): 32−39Zhu Bing-Jjie, Zhu Ying-Tao, Li Jian-Qi. Fuzzy logic control for hybrid electric propulsion energy management system. Journal of National University of Defense Technology, 2023, 45(6): 32−39 [16] Meng J H, Ma N, Meng F M, Zhang X H, Liu L. Energy management strategy of hybrid energy system for a multi-lobes hybrid air vehicle. Energy, 2022, 255: 124539. doi: 10.1016/j.energy.2022.124539 [17] Sun J, Li Z W, Li J Q, Wu G P, Xia Y X. Hybrid power system with adaptive adjustment of weight coefficients multi-objective model predictive control. International Journal of Electrical Power & Energy Systems, 2023, 153: 109296. [18] 宋清超. 多电飞机混合供电系统的动态功率分配控制及大信号稳定性研究. 重庆大学, 2022Song Qing-Chao. Study on dynamic power distribution control and large signal stability of multi-electric aircraft hybrid power supply system [Ph. D. dissertation], Chongqing University, China, 2022 [19] 程龙. 基于混合储能系统的多电飞机功率脉动平抑技术研究. 南京航空航天大学, 2020Cheng Long. Research on power ripple suppression technology of multi-electric aircraft based on hybrid energy storage system [Ph. D. dissertation], Nanjing University of Aeronautics and Astronautics, China, 2020 [20] Hosseinipour A, Hojabri H. Small-signal stability analysis and active damping control of DC microgrids integrated with distributed electric springs. IEEE Transactions on Smart Grid, 2020, 11(5): 3737−3747 doi: 10.1109/TSG.2020.2981132 [21] Li X, Wu X. Autonomous energy management strategy for a hybrid power system of more-electric aircraft based on composite droop schemes. International Journal of Electrical Power & Energy Systems, 2021, 129: 106828 [22] Gao P, Li Y, Zheng X, Liu W, Yao W, Hua Z. A Decentralized Power Allocation Method Based on Virtual Impedance Droop Control for Pulsed Power Load in Aircraft Electrical Power System. IEEE Transactions on Transportation Electrification, 2024, 10(4): 9016−9030 doi: 10.1109/TTE.2024.3376594 [23] Wen Q D, Zhang L S, Liang Z, Liang D L, Liang Y, Yang S Z. Optimized multi-timescale energy management strategy of a novel all-electric aircraft power system unit based on decentralized control. Journal of Energy Storage, 2023, 73: 108903 doi: 10.1016/j.est.2023.108903 [24] Hussaini H, Yang T, Bai G. Artificial intelligence-based hierarchical control design for current sharing and voltage restoration in dc microgrid of the more electric aircraft. IEEE Transactions on Transportation Electrification, 2023, 10(1): 566−582 [25] 刘建宏. 基于模糊控制的无人机增程式混合动力能量管理策略研究. 重庆交通大学, 2024Liu Jian-Hong. Research on energy management strategy of UAV extended-range hybrid power based on fuzzy control [Master dissertation], Chongqing Jiaotong University, China, 2024 [26] 高锋阳, 张浩然. 氢燃料电池混合动力有轨电车的自适应瞬时等效能耗优化. 机械工程学报, 2023, 59(6): 226−238 doi: 10.3901/JME.2023.06.226Gao Feng-Yang, Zhang Hao-Ran. Adaptive instantaneous equivalent energy consumption optimization of hydrogen fuel cell hybrid electric tram. Journal of Mechanical Engineering, 2023, 59(6): 226−238 doi: 10.3901/JME.2023.06.226 [27] Recalde A A, Atkin J A, Bozhko S V. Optimal design and synthesis of MEA power system architectures considering reliability specifications. IEEE transactions on Transportation Electrification, 2020, 6(4): 1801−1818 doi: 10.1109/TTE.2020.3002875 [28] Han Y, Chen W, Li Q. Two-level energy management strategy for PV-Fuel cell-battery-based DC microgrid. International Journal of Hydrogen Energy, 2019, 44(35): 19395−19404 doi: 10.1016/j.ijhydene.2018.04.013 
- 
						
						  
计量
- 文章访问数: 15
- HTML全文浏览量: 10
- 被引次数: 0
 
		         
  
							 
							 下载:
下载: 
				 
							 
							 
							 
							 
							 
							 
							 
							 
							 
							 
							 
							 
							 
							 
						
						
						
					