2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无线控制系统中的联合鲁棒波束成形与设备调度算法

马彪 姜正莽 欧阳慧珉 王子宁 林敏

马彪, 姜正莽, 欧阳慧珉, 王子宁, 林敏. 无线控制系统中的联合鲁棒波束成形与设备调度算法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250120
引用本文: 马彪, 姜正莽, 欧阳慧珉, 王子宁, 林敏. 无线控制系统中的联合鲁棒波束成形与设备调度算法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250120
Ma Biao, Jiang Zheng-Mang, Ouyang Hui-Min, Wang Zi-Ning, Lin Min. Joint robust beamforming and device scheduling algorithm in wireless control systems. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250120
Citation: Ma Biao, Jiang Zheng-Mang, Ouyang Hui-Min, Wang Zi-Ning, Lin Min. Joint robust beamforming and device scheduling algorithm in wireless control systems. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250120

无线控制系统中的联合鲁棒波束成形与设备调度算法

doi: 10.16383/j.aas.c250120 cstr: 32138.14.j.aas.c250120
基金项目: 国家自然科学基金 (62471255), 智能化航天测运控教育部重点实验室基金资助项目 (NO. CYK2024-02-03), 江苏省研究生科研与实践创新计划项目 (KYCX25_1115) 资助
详细信息
    作者简介:

    马彪:南京邮电大学通信与信息工程学院博士研究生. 主要研究方向为通信与控制一体化设计, 鲁棒波束成形. E-mail: mabiao_njupt@163.com

    姜正莽:南京邮电大学通信与信息工程学院硕士研究生. 主要研究方向为无线通信, 通信与控制一体化设计. E-mail: jzm1319976982@gmail.com

    欧阳慧珉:南京工业大学电气工程与控制科学学院教授. 主要研究方向为鲁棒自适应控制理论及其应用, 飞轮储能技术. E-mail: ouyang1982@njtech.edu.cn

    王子宁:南京邮电大学通信与信息工程学院博士研究生. 主要研究方向为智能信号处理, 无线通信. E-mail: 2021010201@njupt.edu.cn

    林敏:南京邮电大学教授. 主要研究方向为无线通信系统, 智能信号处理, 天线新技术. 本文通信作者. E-mail: linmin@njupt.edu.cn

Joint Robust Beamforming and Device Scheduling Algorithm in Wireless Control Systems

Funds: Supported by National Natural Science Foundation of China (62471255), Key Laboratory of Intelligent Space TTC&O (Space Engineering University), Ministry of Education and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX25_1115)
More Information
    Author Bio:

    MA Biao Ph.D. candidate at the School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications. His research interests include joint design of communication and control, and robust beamforming

    JIANG Zheng-Mang Master student at the School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications. His research interests include wireless communications and joint design of communication and control

    OUYANG Hui-Min Professor at the School of Electrical Engineering and Control Science, Nanjing Tech University. His research interests include robust adaptive control theory and its applications, and flywheel energy storage technology

    WANG Zi-Ning Ph.D. candidate at the School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications. His research interests include intelligent signal processing and wireless communications

    LIN Min Professor at Nanjing University of Posts and Telecommunications. His research interests include wireless communication systems, intelligent signal processing, and advanced antenna technologies. Corresponding author of this paper

  • 摘要: 在无线资源受限的情况下, 采用多波束技术来实现多个环路的同时控制是无线控制系统领域的技术难题. 在仅已知非完美信道状态信息的条件下, 提出一种联合鲁棒波束成形与设备调度算法, 保证控制稳定性的同时降低系统总成本. 首先, 以系统控制成本和通信成本的加权和最小化为目标函数, 以满足控制稳定性和发射功率限制为约束条件, 建立一个多个环路同时控制场景下的优化问题. 其次, 通过二次李雅普诺夫函数将稳定性约束转换为传输成功概率约束. 由于该非凸问题难以求解, 进一步提出控制成本与通信成本联合优化的双目标方案, 并基于怀特指数方法提出控制成本最小化的设备调度算法, 同时采用伯恩斯坦不等式和半正定规划等数学工具, 设计满足控制稳定性的通信成本最小化鲁棒波束成形算法. 最后, 计算机仿真表明, 所提方案相比于典型传输方案能够降低10% 至 41%的总成本, 实现通信与控制成本之间的良好折中.
  • 图  1  共享无线信道的多环路无线控制系统

    Fig.  1  Multi-loop wireless control system over shared wireless channels

    图  2  各环路李雅普诺夫函数变化及调度决策图

    Fig.  2  Lyapunov function variation and scheduling decision diagram for each loop

    图  3  不同收敛速率要求下环路被调度总次数对比图

    Fig.  3  Comparison of total scheduling counts of loops under different convergence rate requirements

    图  4  不同解码阈值下的总平均功率对比图

    Fig.  4  Comparison of total average power under different decoding thresholds

    图  5  不同方案下总平均通信成本与控制成本对比图

    Fig.  5  Comparison of total average communication cost and control cost under different schemes

    图  6  不同调度策略下的各成本对比直方图

    Fig.  6  Histogram of cost comparison under different scheduling strategies

    图  7  所提方案与固定BF方案的性能对比图

    Fig.  7  Performance comparison between the proposed scheme and the fixed-BF scheme

  • [1] 于海斌, 曾鹏, 梁炜, 王忠锋, 刘阳, 许驰. 无线化工业控制系统: 架构、关键技术及应用. 自动化学报, 2023, 49(3): 540−549

    Yu Hai-Bin, Zeng Peng, Liang Wei, Wang Zhong-Feng, Liu Yang, Xu Chi. Wireless industrial control system: Architecture, key technologies and applications. Acta Automatica Sinica, 2023, 49(3): 540−549
    [2] Ma Y H, Chen C L, Zeng S, Guan X P, Lu C Y. Data-driven edge offloading for wireless control systems. IEEE Internet of Things Journal, 2023, 10(12): 10802−10816 doi: 10.1109/JIOT.2023.3242770
    [3] Lyu H H, Pang Z B, Bengtsson A, Nilsson S, Isaksson A J, Yang G. Latency-aware control for wireless cloud-fog automation: Framework and case study. IEEE Transactions on Automation Science and Engineering, 2025, 22: 5400−5410 doi: 10.1109/TASE.2024.3420770
    [4] Wang Y, Wu S H, Lei C J, Jiao J, Zhang Q Y. A review on wireless networked control system: The communication perspective. IEEE Internet of Things Journal, 2024, 11(5): 7499−7524 doi: 10.1109/JIOT.2023.3342032
    [5] 王淑玲, 李沛哲, 朱善迎, 陈彩莲, 关新平. 状态相关衰落信道下异构工业物联网系统的最优无线控制. 自动化学报, 2024, 50(12): 2368−2379

    Wang Shu-Ling, Li Pei-Zhe, Zhu Shan-Ying, Chen Cai-Lian, Guan Xin-Ping. Optimal wireless control over state-dependent fading channels for heterogeneous industrial internet of things systems. Acta Automatica Sinica, 2024, 50(12): 2368−2379
    [6] Qiao Y, Fu Y S, Yuan M Y. Communication-control co-design in wireless networks: A cloud control AGV example. IEEE Internet of Things Journal, 2023, 10(3): 2346−2359 doi: 10.1109/JIOT.2022.3211766
    [7] 许方敏, 伍丽娇, 王翔, 赵成林. 5G上行链路中基于预测的紧急资源分配方法研究. 电子与信息学报, 2022, 44(2): 611−619

    Xu Fang-Min, Wu Li-Jiao, Wang Xiang, Zhao Cheng-Lin. Research on prediction based emergency resource allocation in 5G uplink. Journal of Electronics & Information Technology, 2022, 44(2): 611−619
    [8] Han Z D, Li X Y, Zhou Z Q, Huang K B, Gong Y, Zhang Q Y. Wireless communication and control co-design for system identification. IEEE Transactions on Wireless Communications, 2024, 23(5): 4114−4126 doi: 10.1109/TWC.2023.3314689
    [9] Zheng M, Zhang L, Liang W. Control-aware resource scheduling method for wireless networked control systems. IEEE Sensors Journal, 2023, 23(18): 21946−21955 doi: 10.1109/JSEN.2023.3301489
    [10] Huang K, Liu W, Li Y, Vucetic B. To sense or to control: Wireless networked control using a half-duplex controller for ⅡoT. In: Proceedings of the IEEE Global Communications Conference. Waikoloa, HI, USA: IEEE, 2019. 1-6
    [11] Ma H, Zhou S D. Noisy sensor scheduling in wireless networked control systems: Freshness or precision. IEEE Wireless Communications Letters, 2022, 11(5): 1107−1111 doi: 10.1109/LWC.2022.3158380
    [12] Ma H, Zhou S, Zhang X, Xiao L. Transmission scheduling for multi-loop wireless networked control based on LQ cost offset. In: Proceedings of the IEEE Conference on Computer Communications Workshops. Toronto, ON, Canada: IEEE, 2020. 19-25
    [13] Wang X L, Zhang J L, Chen C L, He J P, Ma Y H, Guan X P. Trust-AoI-aware codesign of scheduling and control for edge-enabled ⅡoT Systems. IEEE Transactions on Industrial Informatics, 2024, 20(2): 2833−2842 doi: 10.1109/TII.2023.3299040
    [14] Wen X J, Chen C L, Ren C, Ma Y H, Li M Y, Lyu L. Age-of-task-aware co-design of sampling, scheduling, and control for industrial IoT systems. IEEE Internet of Things Journal, 2024, 11(3): 4227−4242 doi: 10.1109/JIOT.2023.3300921
    [15] Lu X Z, Xu Q M, Wang X L, Lin M H, Chen C L, Shi Z G. Full-loop AoI-based joint design of control and deterministic transmission for industrial CPS. IEEE Transactions on Industrial Informatics, 2023, 19(11): 10727−10738 doi: 10.1109/TII.2023.3241590
    [16] Eisen M, Rashid M M, Gatsis K, Cavalcanti D, Himayat N, Ribeiro A. Control aware radio resource allocation in low latency wireless control systems. IEEE Internet of Things Journal, 2019, 6(5): 7878−7890 doi: 10.1109/JIOT.2019.2909198
    [17] Lyu L, Chen C L, Zhu S Y, Cheng N, Tang Y J, Guan X P. Dynamics-aware and beamforming-assisted transmission for wireless control scheduling. IEEE Transactions on Wireless Communications, 2018, 17(11): 7677−7690 doi: 10.1109/TWC.2018.2869589
    [18] Wang Z N, Lin M, Jiang Z M, Zhu W P, Wang J Z. A stability-guarantee beamforming scheme in multi-loop wireless control systems. IEEE Transactions on Vehicular Technology, 2024, 73(10): 15745−15750 doi: 10.1109/TVT.2024.3403896
    [19] Lin M, Ouyang J, Zhu W P. Joint beamforming and power control for device-to-device communications underlaying cellular networks. IEEE Journal on Selected Areas in Communications, 2016, 34(1): 138−150 doi: 10.1109/JSAC.2015.2452491
    [20] Zhao B, Lin M, Cheng M, Wang J B, Cheng J L, Alouini M S. Robust downlink transmission design in IRS-assisted cognitive satellite and terrestrial networks. IEEE Journal on Selected Areas in Communications, 2023, 41(8): 2514−2529 doi: 10.1109/JSAC.2023.3288234
    [21] Chen L, Hu B, Guan Z H, Zhao L, Zhang D X. Control-aware transmission scheduling for industrial network systems over a shared communication medium. IEEE Internet of Things Journal, 2022, 9(13): 11299−11310 doi: 10.1109/JIOT.2021.3127911
    [22] Weber R R, Weiss G. On an index policy for restless bandits. Journal of Applied Probability, 1990, 27(3): 637−648 doi: 10.2307/3214547
    [23] Astrom K J. Introduction to Stochastic Control Theory. New York: Dover Publ, 2006
    [24] Molin A, Hirche S. On the optimality of certainty equivalence for event-triggered control systems. IEEE Transactions on Automatic Control, 2013, 58(2): 470−474 doi: 10.1109/TAC.2012.2206719
    [25] Li B, Fei Z S, Chu Z, Zhou F H, Wong K K, Xiao P. Robust chance-constrained secure transmission for cognitive satellite-terrestrial networks. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4208−4219 doi: 10.1109/TVT.2018.2791859
    [26] Klugel M, Mamduhi M H, Ayan O, Vilgelm M, Johansson K H, Hirche S. Joint cross-layer optimization in real-time networked control systems. IEEE Transactions on Control of Network Systems, 2020, 7(4): 1903−1915 doi: 10.1109/TCNS.2020.3011847
  • 加载中
计量
  • 文章访问数:  11
  • HTML全文浏览量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-25
  • 录用日期:  2025-08-19
  • 网络出版日期:  2025-11-05

目录

    /

    返回文章
    返回