[1]
|
Lewis F L, Vrabie D, Syrmos V L. Optimal control. Hoboken: Wiley, 2012.
|
[2]
|
Gao W, Jiang Z P, Chai T. Bridging the gap between reinforcement learning and nonlinear output-feedback control. In: 2024 43rd Chinese Control Conference(CCC), Kunming, China: 2024, 2425-2431.
|
[3]
|
Gao W, Jiang Z P. Data-driven cooperative output regulation of multi-agent systems under distributed denial of service attacks. Science China Information Sciences, 2023, 6(9): 1869−1919
|
[4]
|
Hou Z, Wang Z. From model-based control to data-driven control: Survey, classification and perspective. Information Sciences, 2013, 235: 3−35 doi: 10.1016/j.ins.2012.07.014
|
[5]
|
Bu X, Yu Q, Hou Z, Qian W. Model Free Adaptive Iterative Learning Consensus Tracking Control for a Class of Nonlinear Multiagent Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(4): 677−686 doi: 10.1109/TSMC.2017.2734799
|
[6]
|
Hou Z, Xiong S. On Model-Free Adaptive Control and Its Stability Analysis. IEEE Transactions on Automatic Control, 2019, 64(11): 4555−4569 doi: 10.1109/TAC.2019.2894586
|
[7]
|
Liu S, Lin G, Ji H, Jin S, Hou Z. A Novel Enhanced Data-Driven Model-Free Adaptive Control Scheme for Path Tracking of Autonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(1): 579−590 doi: 10.1109/TITS.2024.3487299
|
[8]
|
Xiong S, Hou Z. Model-Free Adaptive Control for Unknown MIMO Nonaffine Nonlinear Discrete-Time Systems With Experimental Validation. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(4): 1727−1739 doi: 10.1109/TNNLS.2020.3043711
|
[9]
|
董昱辰, 高伟男, 姜钟平. 基于分布式自适应内模的多智能体系统协同最优输出调节. 自动化学报, 2025, 51(3): 1−14Dong Y, Gao W, Jiang Z P. Cooperative optimal output regulation for multi-agent systems based on distributed adaptive internal model. Acta Automatica Sinica, 2025, 51(3): 1−14
|
[10]
|
Lewis F L, Liu D. Reinforcement learning and approximate dynamic programming for feedback control. Hoboken: Wiley, 2013.
|
[11]
|
Vrabie D, Vamvoudakis K G, Lewis F L. Optimal adaptive control and differential games by reinforcement learning principles. London: Institution of Engineering and Technology, 2013.
|
[12]
|
Jiang Y, Jiang Z P. Global adaptive dynamic programming for continuous-time nonlinear systems. IEEE Transactions on Automatic Control, 2015, 60(11): 2917−2929 doi: 10.1109/TAC.2015.2414811
|
[13]
|
Wei Q, Liu D, Liu Y, et al. Optimal constrained self-learning battery sequential management in microgrid via adaptive dynamic programming. IEEE/CAA Journal of Automatica Sinica, 2016, 4(2): 168−176
|
[14]
|
Zhang H, Liu D, Luo Y, et al. Adaptive dynamic programming for control: Algorithms and stabilityCommunications and control engineering. Springer, 2013.
|
[15]
|
Lewis F L, Vrabie D, Vamvoudakis K G. Reinforcement learning and feedback control: Using natural decision methods to design optimal adaptive controllers. IEEE Control Systems Magazine, 2012, 32(6): 76−105 doi: 10.1109/MCS.2012.2214134
|
[16]
|
Liu D, Wei Q, Wang D, et al. Adaptive dynamic programming with applications in optimal control. Springer, 2017.
|
[17]
|
Yang Y, Modares H, Vamvoudakis K G, et al. Hamiltonian-driven adaptive dynamic programming with approximation errors. IEEE Transactions on Cybernetics, 2022, 52(12): 13762−13773 doi: 10.1109/TCYB.2021.3108034
|
[18]
|
Gao W, Jiang Z P. Learning-based adaptive optimal output regulation of linear and nonlinear systems: an overview. Control Theory and Technology, 2022, 20(1).
|
[19]
|
Liu D, Wei Q. Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(3): 621−634 doi: 10.1109/TNNLS.2013.2281663
|
[20]
|
Li C, Liu D, Wang D. Data-based optimal control for weakly coupled nonlinear systems using policy iteration. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 48(4): 511−521
|
[21]
|
Zhao B, Wang D, Shi G, et al. Decentralized control for large-scale nonlinear systems with unknown mismatched interconnections via policy iteration. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 48(10): 1725−1735
|
[22]
|
Gao W, Jiang Z P, Chai T. Resilient Control Under Denial-of-service and Uncertainty: An Adaptive Dynamic Programming Approach. IEEE Transactions on Automatic Control, 2025.
|
[23]
|
Jiang Y, Jiang Z P. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica, 2012, 48(10): 2699−2704 doi: 10.1016/j.automatica.2012.06.096
|
[24]
|
Kleinman D. On an iterative technique for Riccati equation computations. IEEE Transactions on Automatic Control, 1968, 13(1): 114−115 doi: 10.1109/TAC.1968.1098829
|
[25]
|
Wei Q, Liu D, Lin H. Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems. IEEE Transactions on Cybernetics, 2016, 46(3): 840−853 doi: 10.1109/TCYB.2015.2492242
|
[26]
|
Gao W, Mynuddin M, Wunsch D C, et al. Reinforcement learning-based cooperative optimal output regulation via distributed adaptive internal model. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(10): 5229−5240 doi: 10.1109/TNNLS.2021.3069728
|
[27]
|
Gao W, Huang M, Jiang Z P, et al. Sampled-data- based adaptive optimal output-feedback control of a 2-DOF helicopter. IET Control Theory and Applications, 2016, 10: 1440−1447 doi: 10.1049/iet-cta.2015.0977
|
[28]
|
Liu D, Wei Q. Adaptive dynamic programming for a class of discrete-time non-affine nonlinear systems with time-delays. In: The 2010 International Joint Conference on Neural Networks(IJCNN), Barcelona, Spain: 2010, 1-6.
|
[29]
|
Xiao F, Shi Y, Ren W. Robustness analysis of asynchronous sampled-data multiagent networks with time-varying delays. IEEE Transactions on Automatic Control, 2018, 63(7): 2145−2152 doi: 10.1109/TAC.2017.2756860
|
[30]
|
Liu Y, Zhang H, Yu R, et al. H∞ tracking control of discrete-time system with delays via databased adaptive dynamic programming. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(11): 4078−4085 doi: 10.1109/TSMC.2019.2946397
|
[31]
|
Gao W, Jiang Z P. Adaptive optimal output regulation of time-delay systems via measurement feedback. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 938−945 doi: 10.1109/TNNLS.2018.2850520
|
[32]
|
Gao W, Jiang Y, Jiang Z P, et al. Output-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming. Automatica, 2016, 72: 37−45 doi: 10.1016/j.automatica.2016.05.008
|
[33]
|
Lewis F L, Vamvoudakis K G. Reinforcement learning for partially observable dynamic processes: Adaptive dynamic programming using measublack output data. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(1): 14−25 doi: 10.1109/TSMCB.2010.2043839
|
[34]
|
Moraal P, Grizzle J. Observer design for nonlinear systems with discrete-time measurements. IEEE Transactions on Automatic Control, 1995, 40(3): 395−404 doi: 10.1109/9.376051
|
[35]
|
Heydari A. Analyzing policy iteration in optimal control. In: 2016 American Control Conference(ACC), Boston, MA, USA: 2016, 5728-5733.
|