2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度语义扩散的深度图修复: 缺陷数据集与模型

闫涛 李彤 张江峰 钱宇华 陈路 吴鹏

闫涛, 李彤, 张江峰, 钱宇华, 陈路, 吴鹏. 基于深度语义扩散的深度图修复: 缺陷数据集与模型. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250024
引用本文: 闫涛, 李彤, 张江峰, 钱宇华, 陈路, 吴鹏. 基于深度语义扩散的深度图修复: 缺陷数据集与模型. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250024
Yan Tao, Li Tong, Zhang Jiang-Feng, Qian Yu-Hua, Chen Lu, Wu Peng. Depth map repair based on depth semantic diffusion: defect dataset and model. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250024
Citation: Yan Tao, Li Tong, Zhang Jiang-Feng, Qian Yu-Hua, Chen Lu, Wu Peng. Depth map repair based on depth semantic diffusion: defect dataset and model. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250024

基于深度语义扩散的深度图修复: 缺陷数据集与模型

doi: 10.16383/j.aas.c250024 cstr: 32138.14.j.aas.c250024
基金项目: 国家自然科学基金 (T2495250, T2495251, 62136005, 62472268, 62373233), 中央引导地方科技发展资金项目 (YDZJSX2023C001, YDZJSX2023B001)资助
详细信息
    作者简介:

    闫涛:山西大学大数据科学与产业研究院副教授. 2017年获得中国科学院大学博士学位. 主要研究方向为三维形貌重建与机器视觉. E-mail: hongyanyutian@sxu.edu.cn

    李彤:山西大学大数据科学与产业研究院硕士. 2025年获得山西大学硕士学位. 主要研究方向为图像处理与机器视觉. E-mail: youlee0918@163.com

    张江峰:山西大学大数据科学与产业研究院博士研究生. 2023年获得山西大学硕士学位. 主要研究方向为三维形貌重建与机器视觉. E-mail: zjf_8099@163.com

    钱宇华:山西大学大数据科学与产业研究院教授. 2011年获得山西大学博士学位. 主要研究方向为人工智能与机器学习. 本文通信作者. E-mail: jinchengqyh@sxu.edu.cn

    陈路:山西大学大数据科学与产业研究院副教授. 2019年获得西北工业大学博士学位. 主要研究方向为机器人抓取与机器视觉. E-mail: chenlu@sxu.edu.cn

    吴鹏:山西大学大数据科学与产业研究院副教授. 2017年获得韩国汉阳大学博士学位. 主要研究方向为区块链与嵌入式实时系统. E-mail: pengwu@sxu.edu.cn

Depth Map Repair Based on Depth Semantic Diffusion: Defect Dataset and Model

Funds: Supported by National Natural Science Foundation of China (T2495250, T2495251, 62136005, 62472268, 62373233), and Funds for Central-government-guided Local Science and Techn-ology Development (YDZJSX2023C001, YDZJSX2023B001)
More Information
    Author Bio:

    YAN Tao Associate professor at the Institute of Big Data Science and Industry, Shanxi University. He received his Ph.D. degree from University of Chinese Academy of Sciences in 2017. His research interest covers 3D shape reconstruction and machine vision

    LI Tong aster student of the Institute of Big Data Science and Industry, Shanxi University. He received his master degree from Shanxi University in 2025. His research interest covers image processing and machine vision

    ZHANG Jiang-Feng Ph.D. candidate at the Institute of Big Data Science and Industry, Shanxi University. He received his master degree from Shanxi University in 2023. His research interest covers 3D shape reconstruction and machine vision

    QIAN Yu-Hua Professor at the Institute of Big Data Science and Industry, Shanxi University. He received his Ph.D. degree from Shanxi University in 2011. His research interest covers artificial intelligence and machine learning. Corresponding author of this paper

    CHEN Lu Associate professor at the Institute of Big Data Science and Industry, Shanxi University. He received his Ph.D. degree from Northwestern Polytechnical University in 2019. His research interest covers robot grabbing and machine vision

    WU Peng Associate professor at the Institute of Big Data Science and Industry, Shanxi University. He received his Ph.D. degree from Hanyang University in 2017. His research interest covers blockchain and embedded real-time systems

  • 摘要: 深度修复旨在解决三维重建过程中深度图的缺失、噪声和遮挡问题. 然而, 由于深度图来源的多样性和异质性, 现有的深度修复方法难以对复杂场景结构及未知类型深度缺陷实现有效修复. 针对上述问题, 不同于现有方法单纯从提升算法鲁棒性的角度进行研究, 从深度缺陷数据集构建的逆向视角出发, 构造一种真实缺陷采样仿真数据集RDSS, 并在此基础上提出一种基于深度语义扩散的深度图修复模型DR-Net. RDSS数据集通过对真实缺陷的采集与建模, 结合同质化形变拓展和异质化交叉组合, 能够对多种复杂场景中的深度缺陷进行形式化仿真, 有效提升深度缺陷的多样性和场景的覆盖性. 设计的深度图修复网络DR-Net基于U型网络结构, 利用反向透射模块实现高分辨率细节保持的同时, 通过深度语义扩散模块传播图像中的深度语义信息, 进而有效提升修复性能. 为验证RDSS数据集的有效性及DR-Net模型的鲁棒性, 从数据集的可用性和网络模型的有效性两个方面进行分析. 实验结果表明: 以RDSS数据集为基准训练数据集, 可实现在其他数据集中深度图的有效修复. 此外, 与最先进的模型设计类修复方法SDFilter和数据驱动类修复方法G2相比, DR-Net模型在RDSS、NYU Depth V2和KITTI三类数据集上的均方根误差指标分别平均下降24.85%和29.54%, 验证了DR-Net模型的有效性和先进性.
  • 图  1  主动与被动方法产生的深度信息缺陷

    Fig.  1  Depth information defects caused by active and passive methods

    图  2  基于深度语义扩散的深度图修复框架 ((a) RDSS数据集构建; (b) DR-Net修复模型; (c) 修复效果评价)

    Fig.  2  Depth map repair framework based on depth semantic diffusion ((a) RDSS dataset construction; (b) DR-Net repair model; (c) Evaluation of repair effectiveness)

    图  3  RDSS数据集构建流程示意图

    Fig.  3  RDSS dataset construction process diagram

    图  4  RDSS数据集生成过程

    Fig.  4  RDSS dataset generation process

    图  5  基于深度语义扩散的深度图修复网络结构

    Fig.  5  Depth map repair network structure based on depth semantic diffusion

    图  6  模型设计类修复方法在NYU Depth V2数据集上的视觉比较结果

    Fig.  6  Visual comparison results of model design repair methods on the NYU Depth V2 dataset

    图  7  RDSS数据集上的模型设计类修复方法的视觉比较结果

    Fig.  7  Visual comparison results of model design repair methods on the RDSS dataset

    图  8  数据驱动类修复方法在NYU Depth V2数据集中的视觉比较结果

    Fig.  8  Visual comparison results of data-driven repair methods on the NYU Depth V2 dataset

    图  9  数据驱动类修复方法在RDSS数据集中的视觉比较结果

    Fig.  9  Visual comparison results of data-driven repair methods on the RDSS dataset

    图  10  KITTI数据集视觉比较结果

    Fig.  10  Visual comparison results of KITTI dataset

    图  11  消融实验的视觉比较结果

    Fig.  11  Visual comparison results of ablation experiments

    图  12  RDSS数据集构建各模块消融定性实验结果

    Fig.  12  Qualitative experimental results of ablation for each module in RDSS dataset construction

    图  13  泛化实验视觉比较

    Fig.  13  Visual comparison of generalization experiments

    表  1  对比算法信息汇总

    Table  1  Summary of comparison algorithm information

    算法模型 期刊或会议 发表年份 参数选择/参数预设
    模型设计类修复方法 SDFilter[20] TPAMI 2018 nei=0, lambda=10, step=20, issparse=true
    GF[14] TPAMI 2013 radius=[2, 4, 8], eps=[$ 0.1^{2} $, $ 0.2^{2} $, $ 0.4^{2} $]
    muGIF[16] TPAMI 2020 alpha_t=[0.001,0.05,0.005], alpha_r=[0,0.02]
    JBU[15] TOG 2007 radius=2, sigma-spatial=2.5
    数据驱动类修复方法 SDformer[27] CVPR 2024 lr=$ 3.0\times10^{-4} $, epochs=250, momentum=0.9, epsilon=$ 10^{-8} $
    G2[28] TPAMI 2023 lr=$ 2.0\times10^{-4} $, epochs=250, amp=True, wd=0.05
    SICNN[21] 3DV 2017 lr=$ 10^{-4} $, epochs=300, wd=$ 2.0\times10^{-4} $,
    SDC[29] ICMV 2019 lr=$ 10^{-3} $, epochs=200, gamma=0.5,wd=0
    下载: 导出CSV

    表  2  模型设计类修复方法性能比较

    Table  2  Performance comparison of model design repair methods

    数据集 模型 MAE MSE RMSE PSNR SSIM Correlation Log RMSE Abs rel Sq rel Avg rank
    NYU Depth V2 SDFilter 0.0077 0.0010 0.0269 32.9778 0.9874 0.9656 0.0006 0.0297 0.0043 1.8889
    GF 0.1952 0.0564 0.2308 12.9909 0.7843 0.2134 0.0294 0.8131 0.2366 4.7778
    muGIF 0.0976 0.0317 0.1658 16.2343 0.7496 0.4426 0.0211 0.3090 0.0806 3.3333
    JBU 0.1798 0.0567 0.2131 14.6377 0.8230 0.9748 0.0257 0.6534 0.1933 3.7778
    DR-Net 0.0102 0.0007 0.0206 36.0192 0.9916 0.9816 0.0003 0.0347 0.0019 1.2222
    RDSS SDFilter 0.1520 0.0441 0.2027 14.1857 0.8185 0.0536 0.0224 0.5041 0.1381 3.0000
    GF 0.2339 0.0817 0.2795 11.2853 0.5652 0.1080 0.0480 0.6618 0.1904 3.7778
    muGIF 0.1490 0.0424 0.1984 14.3945 0.8317 0.0583 0.0216 0.4926 0.1310 1.7778
    JBU 0.2348 0.0822 0.2802 11.2608 0.5614 0.1100 0.0484 0.6640 0.1916 4.5556
    DR-Net 0.1490 0.0405 0.1960 14.3759 0.8442 0.1346 0.0205 0.5233 0.1366 1.4444
    KITTI SDFilter 0.0227 0.0018 0.0406 28.2303 0.8464 0.6726 0.0014 0.3856 0.0270 2.1111
    GF 0.1463 0.0304 0.1726 15.3280 0.4240 0.3973 0.0224 0.3845 0.7825 4.4444
    muGIF 0.0568 0.0054 0.0727 22.8580 0.3559 0.7248 0.0079 0.9355 0.0546 3.2222
    JBU 0.0725 0.0095 0.0954 20.6184 0.3329 0.6967 0.0080 0.8013 0.0889 4.0000
    DR-Net 0.0098 0.0005 0.0211 33.7587 0.7631 0.8372 0.0004 0.2972 0.0487 1.2222
    下载: 导出CSV

    表  3  数据驱动类修复方法性能比较

    Table  3  Performance comparison of data-driven repair methods

    数据集 模型 MAE MSE RMSE PSNR SSIM Correlation Log RMSE Abs rel Sq rel Avg rank
    NYU Depth V2 SDC 0.0836 0.0146 0.1102 20.0451 0.9152 0.3461 0.0079 0.3103 0.0478 4.3333
    SICNN 0.0841 0.0143 0.1093 20.0730 0.9112 0.3527 0.0079 0.3178 0.0489 4.3333
    G2 0.0248 0.0101 0.0311 30.3234 0.9605 0.8324 0.0045 0.0823 0.0041 1.2222
    SDformer 0.0352 0.0162 0.0395 28.2451 0.9242 0.8058 0.0072 0.0602 0.0065 3.1111
    DR-Net 0.0102 0.0007 0.0206 36.0192 0.9916 0.9816 0.0003 0.0347 0.0019 1.0000
    RDSS SDC 0.2360 0.0834 0.2834 11.1192 0.5127 0.0253 0.0488 0.6835 0.2047 4.3333
    SICNN 0.2339 0.0817 0.2795 11.2837 0.5655 0.1083 0.0480 0.6615 0.1906 3.3333
    G2 0.2483 0.0971 0.3069 10.3930 0.7547 0.1085 0.0453 0.9300 0.3897 4.3333
    SDformer 0.1565 0.0424 0.1997 14.2495 0.8020 0.1165 0.0229 0.5072 0.0035 1.7778
    DR-Net 0.1490 0.0405 0.1960 14.3759 0.8442 0.1346 0.0205 0.5233 0.1366 1.2222
    KITTI SDC 0.0439 0.0050 0.0698 23.2631 0.7535 0.7433 0.0039 0.8013 0.0889 4.4444
    SICNN 0.0432 0.0051 0.0707 23.1433 0.7596 0.8935 0.0040 0.7768 0.0907 4.2222
    G2 0.0102 0.0007 0.0260 31.8424 0.8092 0.8497 0.0006 0.0049 0.0595 1.7778
    SDformer 0.0217 0.0037 0.0318 30.5623 0.7924 0.8138 0.0013 0.3547 0.0647 3.0000
    DR-Net 0.0098 0.0005 0.0211 33.7587 0.7631 0.8372 0.0004 0.2972 0.0487 1.4444
    下载: 导出CSV

    表  4  数据驱动类修复方法计算代价和预测精度实验结果

    Table  4  Experimental results on computational cost and prediction accuracy of data-driven repair methods

    数据集 模型 MSE $ \downarrow $ Params. (M) FLOPs (G) Time (ms)
    NYU Depth V2 SDC 0.0146 1.8 3.5 18
    SICNN 0.0143 3.2 6.8 32
    G2 0.0101 12.5 24.3 85
    SDformer 0.0162 38.7 68.2 210
    DR-Net 0.0007 22.1 41.5 125
    RDSS SDC 0.0884 1.8 3.5 19
    SICNN 0.0817 3.2 6.8 33
    G2 0.0971 12.5 24.3 87
    SDformer 0.0424 38.7 68.2 215
    DR-Net 0.0405 22.1 41.5 130
    KITTI SDC 0.0050 1.8 3.5 21
    SICNN 0.0051 3.2 6.8 35
    G2 0.0007 12.5 24.3 90
    SDformer 0.0037 38.7 68.2 230
    DR-Net 0.0005 22.1 41.5 140
    下载: 导出CSV

    表  5  消融实验的量化及计算代价比较结果

    Table  5  Quantitative and computational cost comparison results of ablation experiments

    模型名称 结构组成 RMSE MSE MAE Params. (M) FLOPs (G) Time (ms)
    U-Net RT DSD
    U $ \surd $ 0.1519 0.0267 0.1193 15.2 28.5 90
    U+RT $ \surd $ $ \surd $ 0.0882 0.0100 0.0617 15.2 34.2 117
    U+RT+DSD $ \surd $ $ \surd $ $ \surd $ 0.0206 0.0007 0.0102 22.1 41.5 125
    U+U $ \surd $ 0.1253 0.0200 0.0982 30.4 57.0 180
    U+U+DSD $ \surd $ $ \surd $ 0.0437 0.0031 0.0213 32.5 62.5 201
    U+U+RT $ \surd $ $ \surd $ 0.0498 0.0036 0.0316 30.4 68.4 234
    下载: 导出CSV

    表  6  RDSS数据集构建过程中各模块消融定量实验结果

    Table  6  Quantitative ablation experimental results of each module in the RDSS dataset construction process

    序号 结构 RMSE$ \downarrow $ MSE$ \downarrow $ MAE$ \downarrow $ Correlation$ \uparrow $
    真实缺陷选择 模拟缺陷生成 数据增广
    实验一 × 0.1350 0.0189 0.0667 0.4351
    实验二 × 0.1262 0.0167 0.0726 0.4884
    实验三 × 0.1339 0.0188 0.0768 0.4275
    实验四 × × 0.1212 0.0153 0.0640 0.5166
    实验五 × × 0.1340 0.0188 0.0707 0.4459
    实验六 0.0882 0.0100 0.0617 0.7870
    下载: 导出CSV

    表  7  各模型在NYU Depth V2数据集中的泛化性能比较

    Table  7  Generalization performance comparison of various models on the NYU Depth V2 dataset

    模型 MAE$ \downarrow $ MSE$ \downarrow $ RMSE$ \downarrow $ Correlation$ \uparrow $
    SDC 0.1614 0.0986 0.2584 0.8209
    SICNN 0.1687 0.1093 0.2531 0.8608
    G2 0.2651 0.1189 0.3396 0.7662
    SDformer 0.4234 0.2254 0.4659 0.3713
    DR-Net 0.1069 0.0895 0.2098 0.8482
    下载: 导出CSV
  • [1] Wang X H, Wang W G, Shao J Y, Yang Y. Learning to follow and generate instructions for language-capable navigation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 44(3): 3334−3350
    [2] Chen L, Wu P H, Chitta K, Jaeger B, Geiger A, Li H Y. End-to-end autonomous driving: Challenges and frontiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10164−10183 doi: 10.1109/TPAMI.2024.3435937
    [3] Yan T, Hu Z G, Qian Y H, Qiao Z W, Zhang L Y. 3D shape reconstruction from multifocus image fusion using a multidirectional modified Laplacian operator. Pattern Recognition, 2020, 98: Article No. 107065 doi: 10.1016/j.patcog.2019.107065
    [4] Yan T, Wu P, Qian Y H, Hu Z G, Liu F X. Multiscale fusion and aggregation pcnn for 3D shape recovery. Information Sciences, 2020, 536: 277−297 doi: 10.1016/j.ins.2020.05.100
    [5] 张江峰, 闫涛, 王克琪, 钱宇华, 吴鹏. 多景深图像聚焦信息的三维形貌重建:数据集与模型. 计算机学报, 2023, 46(8): 1734−1752 doi: 10.11897/SP.J.1016.2023.01734

    Zhang Jiang-Feng, Yan Tao, Wang Ke-Qi, Qian Yu-Hua, Wu Peng. 3D shape reconstruction of multi depth image focusing information: Dataset and model. Chinese Journal of Computers, 2023, 46(8): 1734−1752 doi: 10.11897/SP.J.1016.2023.01734
    [6] 闫涛, 钱宇华, 李飞江, 闫泓任, 王婕婷, 梁吉业, 等. 三维时频变换视角的智能微观三维形貌重建方法. 中国科学: 信息科学, 2023, 53(2): 282−308 doi: 10.1360/SSI-2021-0386

    Yan Tao, Qian Yu-Hua, Li Fei-Jiang, Yan Hong-Ren, Wang Jie-Ting, Liang Ji-Ye, et al. Intelligent microscopic 3D shape reconstruction method with three dimensional time frequency transform perspective. Scientia Sinica Informationis, 2023, 53(2): 282−308 doi: 10.1360/SSI-2021-0386
    [7] 闫涛, 高浩轩, 张江峰, 钱宇华, 张临垣. 分组并行的轻量化实时微观三维形貌重建方法. 软件学报, 2024, 35(4): 1717−1731

    Yan Tao, Gao Hao-Xuan, Zhang Jiang-Feng, Qian Yu-Hua, Zhang Lin-Yuan. Group parallel lightweight real-time micro 3D morphology reconstruction method. Journal of Software, 2024, 35(4): 1717−1731
    [8] Yan T, Qian Y H, Zhang J F, Wang J T, Liang J Y. SAS: A general framework induced by sequence association for shape from focus. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, DOI: 10.1109/TPAMI.2025.3577595
    [9] 张振宇, 杨健. 基于元学习的双目深度估计在线适应算法. 自动化学报, 2023, 49(7): 1446−1455

    Zhang Zhen-Yu, Yang Jian. Online adaptation through meta-learning for stereo depth estimation. Acta Automatica Sinica, 2023, 49(7): 1446−1455
    [10] 闫涛, 尚起慧, 吴鹏, 张江峰, 钱宇华, 陈斌. 多尺度代价聚合的多聚焦图像3维形貌重建框架. 计算机研究与发展, 2025, 62(7): 1771−1785 doi: 10.7544/issn1000-1239.202330984

    Yan Tao, Shang Qi-Hui, Wu Peng, Zhang Jiang-Feng, Qian Yu-Hua, Chen Bin. Multi-scale cost aggregation framework for 3D shape reconstruction from multi-focus images. Journal of Computer Research and Development, 2025, 62(7): 1771−1785 doi: 10.7544/issn1000-1239.202330984
    [11] Wang C L, Chen N, Heidrich W. dO: A differentiable engine for deep lens design of computational imaging systems. IEEE Transactions on Computational Imaging, 2022, 8: 905−916 doi: 10.1109/TCI.2022.3212837
    [12] Ramirez P Z, Tosi F, Stefano L D, Timofte R, Costanzino A, Poggi M, et al. NTIRE 2024 challenge on HR depth from images of specular and transparent surfaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Milan, Italy: IEEE, 2024. 6499−6512
    [13] Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 2002, 47: 7−42 doi: 10.1023/A:1014573219977
    [14] Silberman N, Hoiem D, Kohli P, Fergus, R. Indoor segmentation and support inference from RGBD images. In: Proceedings of the European Conference on Computer Vision (ECCV). Florence, Italy: Springer, 2012. 746−760
    [15] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? the kitti vision benchmark suite. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Providence, USA: IEEE, 2012. 3354-3361
    [16] Mayer N, Ilg E, Husser P, Fischer P, Cremers D, Dosovitskiy A, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 4040−4048
    [17] He K M, Sun J, Tang X O. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(6): 1397−1409
    [18] Kopf J, Cohen M F, Lischinski D, Uyttendaele M. Joint bilateral upsampling. ACM Transactions on Graphics, 2007, 26(3): 96−102 doi: 10.1145/1276377.1276497
    [19] Guo X J, Li Y, Ma J Y. Mutually guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 42(3): 694−707
    [20] Liu X M, Zhai D M, Chen R, Ji X Y, Zhao D B, Gao W. Depth restoration from RGBD data via joint adaptive regularization and thresholding on manifolds. IEEE Transactions on Image Processing, 2018, 28(3): 1068−1079
    [21] Lo K H, Hua K L, Wang Y C F. Depth map super-resolution via Markov random fields without texture-copying artifacts. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Vancouver, Canada: IEEE, 2013. 1414−1418
    [22] Zhao E Z, Dong L L, Li C X, Ji Y J. Infrared maritime target detection based on temporal weight and total variation regularization under strong wave interferences. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5005819−5005838
    [23] Ham B, Cho M, Ponce J. Robust guided image filtering using nonconvex potentials. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(1): 192−207
    [24] Uhrig J, Schneider N, Schneider L, Franke U, Brox T, Geiger A. Sparsity invariant CNNs. In: Proceedings of International Conference on 3D Vision (3DV). Qingdao, China: IEEE, 2017. 11−20
    [25] Huang Z X, Fan J M, Cheng S G, Yi S., Wang X G, Li H S. HMS-Net: Hierarchical multi-scale sparsity-invariant network for sparse depth completion. IEEE Transactions on Image Processing, 2019, 29: 3429−3441
    [26] Eldesokey A, Felsberg M, Khan F S. Propagating confidences through CNNs for sparse data regression. In: Proceedings of the British Machine Vision Conference (BMVC). Northumbria, Britain: BMVA, 2018. 1−11
    [27] Kim B, Ponce J, Ham B. Deformable kernel networks for joint image filtering. International Journal of Computer Vision, 2021, 129(2): 579−600 doi: 10.1007/s11263-020-01386-z
    [28] Hui T W, Loy C C, Tang X O. Depth map super-resolution by deep multi-scale guidance. In: Proceedings of the European Conference on Computer Vision (ECCV). Amsterdam, Netherlands: Springer, 2016. 353−369
    [29] Guo C L, Li C Y, Guo J C, Cong R M, Fu H Z, Han P. Hierarchical features driven residual learning for depth map super-resolution. IEEE Transactions on Image Processing, 2018, 28(5): 2545−2557
    [30] Qian J, Sun M, Lee A, Li J, Zhuo S L, Chiang P Y. SDformer: Efficient end-to-end transformer for depth completion. arXiv preprint arXiv: 2409.08159, 2024.
    [31] Wang H, Yang M, Zheng N. G2-MonoDepth: A general framework of generalized depth inference from monocular RGB+X data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 46(5): 3753−3771
    [32] Gansbeke V W, Neven D, Brabandere D B, Gool L V. Sparse and noisy LiDAR completion with RGB guidance and uncertainty. In: Proceedings of the International Conference on Machine Vision Applications (MVA). Tokyo, Japan: IEEE, 2019. 1−6
    [33] Wang Y Q, Cheng K, He J W, Wang Q T, Dai H C, Chen Y T, et al. Drivingdojo dataset: Advancing interactive and knowledge-enriched driving world model. arXiv preprint arXiv: 2410.10738, 2024.
    [34] Luisier F, Blu T, Unser M. Image denoising in mixed Poisson--Gaussian noise. IEEE Transactions on Image Processing, 2010, 20(3): 696−708
    [35] Azzeh J, Zahran B, Alqadi Z. Salt and pepper noise: Effects and removal. JOIV: International Journal on Informatics Visualization, 2018, 2(4): 252−256 doi: 10.30630/joiv.2.4.151
    [36] Le T, Chartrand R, Asaki T J. A variational approach to reconstructing images corrupted by Poisson noise. Journal of Mathematical Imaging and Vision, 2007, 27(3): 257−263 doi: 10.1007/s10851-007-0652-y
    [37] Ramdas A, Poczos B, Singh A, Wasserman L. An analysis of active learning with uniform feature noise. In: Proceedings of Artificial Intelligence and Statistics (AISTATS). Reykjavik, Iceland: PMLR, 2014. 805−813
    [38] Cubuk E D, Zoph B, Shlens J, Le Q V. Randaugment: Practical automated data augmentation with a reduced search space.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington, USA: IEEE, 2020. 702−703
    [39] Perlin K. An image synthesizer. ACM Siggraph Computer Graphics, 1985, 19(3): 287−296 doi: 10.1145/325165.325247
  • 加载中
计量
  • 文章访问数:  23
  • HTML全文浏览量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-17
  • 录用日期:  2025-08-14
  • 网络出版日期:  2025-08-20

目录

    /

    返回文章
    返回