2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

网络攻击下多智能体系统攻击检测设计与分布式弹性控制

张文雨 徐勇 孙健 陈杰

张文雨, 徐勇, 孙健, 陈杰. 网络攻击下多智能体系统攻击检测设计与分布式弹性控制. 自动化学报, xxxx, xx(x): x−xx
引用本文: 张文雨, 徐勇, 孙健, 陈杰. 网络攻击下多智能体系统攻击检测设计与分布式弹性控制. 自动化学报, xxxx, xx(x): x−xx
Zhang Wen-Yu, Xu Yong, Sun Jian, Chen Jie. Attack detection design and distributed resilient control of multi-agent systems under cyber-attacks. Acta Automatica Sinica, xxxx, xx(x): x−xx
Citation: Zhang Wen-Yu, Xu Yong, Sun Jian, Chen Jie. Attack detection design and distributed resilient control of multi-agent systems under cyber-attacks. Acta Automatica Sinica, xxxx, xx(x): x−xx

网络攻击下多智能体系统攻击检测设计与分布式弹性控制

cstr: 32138.14.j.aas.c000000
基金项目: 国家重大研究计划(62495059, 62495095), 国家自然科学基金(62322305)资助
详细信息
    作者简介:

    张文雨:北京理工大学自动化学院硕士研究生. 2022年获得吉林大学自动化学士学位. 主要研究方向为多智能体系统, 分布式协同控制, 网络系统控制. E-mail: zhangwenyu@bit.edu.cn

    徐勇:北京理工大学自动化学院教授. 2020年获得浙江大学控制科学与工程博士学位. 主要研究方向为多智能体系统, 分布式协同控制与应用, 强化学习/数据驱动控制, 事件触发控制, 安全分析, 网络系统控制. 本文通信作者. E-mail: xuyong@bit.edu.cn

    孙健:北京理工大学自动化学院教授. 2007年获得中国科学院自动化研究所博士学位. 主要研究方向为网络控制系统, 时延系统, 信息物理系统. E-mail: sunjian@bit.edu.cn

    陈杰:北京理工大学自动化学院教授. 2001年获得北京理工大学控制理论与控制工程博士学位. 主要研究方向为复杂系统, 多智能体系统, 多目标优化与决策, 约束非线性控制. E-mail: chenjie@bit.edu.cn

Attack Detection Design and Distributed Resilient Control of Multi-agent Systems Under Cyber-attacks

Funds: Supported by Major Research plan of the National Natural Science Foundation of China (62495059, 62495095) and National Natural Science Foundation of China (62322305)
More Information
    Author Bio:

    ZHANG Wen-Yu M.S. candidate at the School of Automation, Beijing Institute of Technology. She received the B.S. degree in Automation from Jilin University in 2022. Her research interest covers multi-agent systems, distributed cooperative control and the control of networked systems

    XU Yong Professor at the School of Automation, Beijing Institute of Technology. He received Ph.D. degree in control science and engineering from Zhejiang University in 2020. His research interest covers multi-agent systems, distributed cooperative control and applications, reinforcement learning/data-driven control, event-triggered control security analysis, and the control of networked systems. Corresponding author of this paper

    SUN Jian Professor at the School of Automation, Beijing Institute of Technology. He received Ph.D. degree in control theory and control engineering from the Institute of Automation, Chinese Academy of Sciences in 2007. His research interest covers networked control systems, time-delay systems and security of cyber-physical systems

    CHEN Jie Professor at the School of Automation, Beijing Institute of Technology. He received Ph.D. degree in control theory and control engineering from the Beijing Institute of Technology in 2001. His research interest covers complex systems, multiagent systems, multiobjective optimization and decision, and constrained non-linear control

  • 摘要: 提出一种集攻击检测与防御控制于一体的策略来研究执行器攻击下多智能体系统的弹性跟踪控制问题. 在攻击检测方面, 设计一种基于状态机的动态特征函数建模检测方案. 该方案提出采用线性函数观测器对执行器信号进行估计, 并依据实际信号与估计值之间的误差特性构建攻击检测准则, 以此实现对执行器攻击的有效检测. 在防御策略设计上, 为降低执行器攻击对系统跟踪共识性能的影响, 构建一种基于虚拟网络增强的协同控制系统. 该系统通过与领导者及各跟随者建立连接, 在执行器攻击信息未知的情况下, 确保系统能够实现弹性跟踪控制. 具体而言, 当检测到攻击发生时, 各跟随者的防御控制策略将切换至虚拟层提供的控制信号; 若未检测到攻击, 则维持各跟随者原有的实际控制信号. 与现有研究成果相比, 所设计的控制器无需预先获取恶意节点数量及攻击者位置等先验信息, 具有更强的实用性和适应性. 最后, 通过一个数值算例对所提出的理论算法进行验证, 结果表明该算法能够有效应对执行器攻击, 实现多智能体系统的弹性跟踪控制.
  • 图  1  本文提出的攻击检测方法流程图

    Fig.  1  Flowchart of the proposed attack detection method in this paper

    图  2  虚拟分布式网络通信拓扑图

    Fig.  2  Communication topology graph with a virtual distributed network

    图  3  利用线性观测器估计控制信号的误差

    Fig.  3  Estimation error $e_{u}(t)$ of control signals by using the linear observer

    图  4  $t=5\; \mathrm{s}$时, 攻击发生在智能体2((a) 攻击检测计数$\alpha_{i}$即$\alpha_{2}$超过计数阈值$\alpha_{2,\;\mathrm{max}}$; (b) 控制器$u_{2}(t)$切换到$\bar{u}_{2}(t)$)

    Fig.  4  Attack on agent 2 at $t = 5\; \mathrm{s}$ ((a) The attack detection count $\alpha_{i}$ namely $\alpha_{2}$ exceeds a count threshold $\alpha_{2,\;\mathrm{max}}$; (b) Controller $u_{2}(t)$ switched to $\bar{u}_{2}(t)$)

    图  5  $t=8\; \mathrm{s}$时, 攻击发生在智能体4((a) 攻击检测计数$\alpha_{i}$即$\alpha_{4}$超过计数阈值$\alpha_{4,\;\mathrm{max}}$; (b) 控制器$u_{4}(t)$切换到$\bar{u}_{4}(t))$

    Fig.  5  Attack on agent 4 at $t = 8\; \mathrm{s}$((a) The attack detection count $\alpha_{i}$ namely $\alpha_{4}$ exceeds a count threshold $\alpha_{4,\;\mathrm{max}}$; (b) Controller $u_{4}(t)$ switched to $\bar{u}_{4}(t)$)

    图  6  在弹性控制器控制下状态$ x_{1}(t)$的轨迹

    Fig.  6  Trajectories of $ x_{1}(t)$ under switching a resilient controller

    图  7  在弹性控制器控制下状态$x_{2}(t)$的轨迹

    Fig.  7  Trajectories of $x_{2}(t)$ under switching a resilient controller

    表  1  攻击检测算法的相关参数

    Table  1  Relevant parameters of attack detection algorithm

    参数 符号
    积分时间周期 $ T_{o} $ 0.2
    避免误报时间周期 $ T_{c} $ 1
    攻击检测准则阈值 $ \Psi_{i,\;\mathrm{max}} $ 1
    攻击检测计数阈值 $ \alpha_{i,\;\mathrm{max}} $ 5
    积分系数 $ \mu_{i} $ 1
    虚拟网络层系数 $ T_{vi},\; T_{wi},\; T_{\theta i} $ 0.01, 0.1, 0.001
    系统参数 $ k,\; \beta,\; \alpha_{i},\; \eta_{i} $ 10, 10, 10, 0.1
    下载: 导出CSV
  • [1] Baheti R, Gill H. Cyber-physical systems. The impact of control technology, 2011, 12(1): 161−166
    [2] Xu Y, Wu Z G, Pan Y J. Observer-based dynamic event-triggered adaptive control of distributed networked systems with application to ground vehicles. IEEE Transactions on Industrial Electronics, 2023, 70(4): 4148−4157 doi: 10.1109/TIE.2022.3176242
    [3] Xu Y, Sun J, Pan Y J, Wu Z G. Dynamic deadband event-triggered strategy for distributed adaptive consensus control with applications to circuit systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(11): 4663−4673 doi: 10.1109/TCSI.2022.3197846
    [4] Gorbachev S, Mani A, Li L, Li L, Zhang Y. Distributed energy resources based two-layer delay-independent voltage coordinated control in active distribution network. IEEE Transactions on Industrial Informatics, 2024, 20(2): 1220−1230 doi: 10.1109/TII.2023.3270668
    [5] X Y, Wu Z G, Pan Y J. Off-policy learning-based following control of cooperative autonomous vehicles under distributed attacks. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5): 5120−5130 doi: 10.1109/TITS.2023.3240731
    [6] Wu S, Luo H, Yin S, Li K, Jiang Y C. A residual-driven secure transmission and detection approach against stealthy cyber-physical attacks for accident prevention. IEEE Transactions on Information Forensics and Security, 2023, 18: 5762−5771 doi: 10.1109/TIFS.2023.3314194
    [7] Zhao X, Ma Z J, Shi X Y, Zou S L. Attack detection and mitigation scheme of load frequency control systems against false data injection attacks. IEEE Transactions on Industrial Informatics, 2024, 20(8): 9952−9962 doi: 10.1109/TII.2024.3390549
    [8] Liu H, Li Y Z, Han Q L, Raïssi T, Chai T Y. Secure estimation, attack isolation, and reconstruction based on zonotopic unknown Input observer. IEEE Transactions on Automatic Control, 2023, 68(12): 7312−7325 doi: 10.1109/TAC.2023.3275965
    [9] Qi X, Zhu L K, Li X, Gong R Q. Observer-based event-triggered sliding mode security control for nonlinear cyber-physical systems under DoS attacks. IEEE Transactions on Automation Science and Engineering, 2024, 21(4): 7480−7493 doi: 10.1109/TASE.2023.3343752
    [10] Zhao D, Yang B, Li Y Y, Zhang H. Replay attack detection for cyber-physical control systems: A dynamical delay estimation method. IEEE Transactions on Industrial Electronics, 2025, 72(1): 867−875 doi: 10.1109/TIE.2024.3406859
    [11] Zhao D, Shi Y, Ding S X, Li Y Y, Fu F Z. Replay attack detection based on parity space method for cyber-physical systems. IEEE Transactions on Automatic Control, 2025, 70(4): 2390−2405 doi: 10.1109/TAC.2024.3476309
    [12] Siu J Y, Kumar N, Panda S K. Command authentication using multiagent system for attacks on the economic dispatch problem. IEEE Transactions on Industry Applications, 2022, 58(4): 4381−4393 doi: 10.1109/TIA.2022.3172240
    [13] Zhu P, Jin S T, Bu X H, Hou Z S, Yin C K. Model-free adaptive control for a class of MIMO nonlinear cyber-physical systems under false data injection attacks. IEEE Transactions on Control of Network Systems, 2023, 10(1): 467−478 doi: 10.1109/TCNS.2022.3203354
    [14] Suprabhath K S, Prasad M V S, Madichetty S, Mishra S. A deep learning based cyber attack detection scheme in DC microgrid systems. CPSS Transactions on Power Electronics and Applications, 2023, 8(2): 119−127
    [15] Abianeh A J, Wan Y, Ferdowsi F, Mijatovic N, Dragicevic T. Vulnerability identification and remediation of FDI attacks in islanded DC microgrids using multi-agent reinforcement learning. IEEE Transactions on Power Electronics, 2022, 37(6): 6359−6370 doi: 10.1109/TPEL.2021.3132028
    [16] Gusrialdi A, Qu Z, Simaan M A. Competitive interaction design of cooperative systems against attacks. IEEE Transactions on Automatic Control, 2018, 63(9): 3159−3166 doi: 10.1109/TAC.2018.2793164
    [17] Ahmed A, Saeed M A, Jenabzadeh A, Xu X L, Zhang W D. Frequency domain resilient consensus of multiagent systems under IMP-based and non IMP-based attacks. Automatica, 2022, 146(110582): 0005−1098
    [18] Wang Y C, Rajabinezhad M, Zuo S. Secondary defense strategies of AC microgrids under polynomially unbounded FDI attacks and communication link faults. IEEE Control Systems Letters, 2024, 8: 2223−2228 doi: 10.1109/LCSYS.2024.3415485
    [19] Zuo S, Wang Y C, Rajabinezhad M, Zhang Y. Resilient containment control of heterogeneous multiagent systems against unbounded attacks on sensors and actuators. IEEE Transactions on Control of Network Systems, 2024, 11(3): 1537−1547 doi: 10.1109/TCNS.2023.3338772
    [20] Lan J, Wang H, Liu Y J, Tong S C. Adaptive intelligent resilient bipartite formation control for nonlinear multiagent systems with false data injection attacks on actuators and sensors. IEEE Transactions on Artificial Intelligence, 2021, 5(10): 5194−5204
    [21] Kachhwaha M, Modi H, Nehra M K, Fulwani D. Robust observer-based defense strategy against actuator and sensor cyber-attacks in DCMGs. IEEE Transactions on Industrial Informatics, 2024, 20(10): 11687−11696 doi: 10.1109/TII.2024.3412211
    [22] Yue W B, Yang Y, Sun W. Resilient consensus control for heterogeneous multiagent systems via multiround attack detection and isolation algorithm. IEEE Transactions on Industrial Informatics, 2024, 20(3): 4735−4744 doi: 10.1109/TII.2023.3327175
    [23] Tan S, Xie P, Guerrero J M, Vasquez J C, Han R K. Cyberattack detection for converter-based distributed DC microgrids: Observer-based approaches. IEEE Industrial Electronics Magazine, 2022, 16(3): 67−77 doi: 10.1109/MIE.2021.3059996
    [24] Gusrialdi A, Qu Z H, Simaan M A. Competitive interaction design of cooperative systems against attacks. IEEE Transactions on Automatic Control, 2018, 63(9): 3159−3166 doi: 10.1109/TAC.2018.2793164
    [25] Kachhwaha M, Modi H, Nehra M K, Fulwani D. Resilient control of DC microgrids against cyber attacks: A functional observer based approach. IEEE Transactions on Power Electronics, 2023
    [26] Sadabadi M S, Atman M W S, Aynala A, Gusrialdi A. Resilient design of leader–follower consensus against cyber-attacks. IEEE Transactions on Control of Network Systems, 2024, 11(2): 1080−1092 doi: 10.1109/TCNS.2023.3332778
  • 加载中
计量
  • 文章访问数:  11
  • HTML全文浏览量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-11
  • 录用日期:  2025-09-24
  • 网络出版日期:  2025-10-09

目录

    /

    返回文章
    返回