[1]
|
Shotton J, Winn J W, Rother C, Criminisi A. Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. International Journal of Computer Vision, 2009, 81(1): 2-23
|
[2]
|
[2] Tu Z W, Bai X. Auto-context and its application to highlevel vision tasks and 3D brain image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1744-1757
|
[3]
|
[3] Gould S, Rodgers J, Cohen D, Elidan E, Koller D. Multi-class segmentation with relative location prior. International Journal of Computer Vision, 2008, 80(3): 300-316
|
[4]
|
[4] Gould S, Fulton R, Koller D. Decomposing a scene into geometric and semantically consistent regions. In: Proceedings of the 12th IEEE Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 1-8
|
[5]
|
Jiang Li-Xing, Hou Jin. Image annotation using the ensemble learning. Acta Automatica Sinica, 2012, 38(8): 1257-1262(蒋黎星, 侯进. 基于集成分类算法的自动图像标注. 自动化学报, 2012, 38(8): 1257-1262)
|
[6]
|
Zhang Su-Lan, Guo Ping, Zhang Ji-Fu, Hu Li-Hua. Automatic semantic image annotation with granular analysis method. Acta Automatica Sinica, 2012, 38(5): 688-697(张素兰, 郭平, 张继福, 胡立华. 图像语义自动标注及其粒度分析方法. 自动化学报, 2012, 38(5): 688-697)
|
[7]
|
Yang Dong, Zhou Xiu-Ling, Guo Ping. Image annotation with Bayesian universal background model. Acta Automatica Sinica, 2013, 39(10): 1674-1680(杨栋, 周秀玲, 郭平. 基于贝叶斯通用背景模型的图像标注. 自动化学报, 2013, 39(10): 1674-1680)
|
[8]
|
[8] Lafferty J, McCallum A, Pereira F. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 2008 IEEE Conference on Machine Learning. Helsinki, Finland: IEEE, 2008. 282-289
|
[9]
|
[9] Galleguillos C, Rabinovich A, Belongie S. Object categorization using co-occurrence, location and appearance. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8
|
[10]
|
Hoiem D, Efros A A, Hebert M. Geometric context from a single image. In: Proceedings of the 2005 IEEE Conference on Computer Vision. Beijing, China: IEEE, 2005. 654-661
|
[11]
|
He X M, Zemel R S, Ray D. Learning and incorporating top-down cues in image segmentation. In: Proceedings of the 2006 Europe Conference on Computer Vision. Berlin Heidelberg: Springer, 2006. 338-351
|
[12]
|
Medin D L, Schaffer M M. Context theory of classification learning. Psychological Review, 1978, 85(3): 207-238
|
[13]
|
Yang L, Meer P, Foran D J. Multiple class segmentation using a unified framework over mean-shift patches. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8
|
[14]
|
Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-617
|
[15]
|
Elkan C. Using the triangle inequality to accelerate k-means. In: Proceedings of the 2003 IEEE Conference on Machine Learning. Washington D.C., USA: IEEE, 2003. 147-153
|
[16]
|
Collins M, Schapire R, Singer Y. Logistic regression, adaboost and Bregman distances. Machine Learning, 2002, 48(1-3): 253-285
|
[17]
|
Yao B, Yang X, Zhu S C. Introduction to a large scale general purpose groundtruth dataset: methodology, annotation tool, and benchmark. In: Proceedings of the 2009 Energy Minimization Methods in Computer Vision and Pattern Recognition. Berlin, Heidelberg: Springer-Verlag, 2007. 169-183
|