2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合梯度最小化Mumford-Shah模型的高维滤波算法

李波 苏卓 冷成财 王胜法 罗笑南

李波, 苏卓, 冷成财, 王胜法, 罗笑南. 基于混合梯度最小化Mumford-Shah模型的高维滤波算法. 自动化学报, 2014, 40(12): 2926-2935. doi: 10.3724/SP.J.1004.2014.02926
引用本文: 李波, 苏卓, 冷成财, 王胜法, 罗笑南. 基于混合梯度最小化Mumford-Shah模型的高维滤波算法. 自动化学报, 2014, 40(12): 2926-2935. doi: 10.3724/SP.J.1004.2014.02926
LI Bo, SU Zhuo, LENG Cheng-Cai, WANG Sheng-Fa, LUO Xiao-Nan. Gradient Minimized Mumford-Shah Model for High-dimensional Filtering. ACTA AUTOMATICA SINICA, 2014, 40(12): 2926-2935. doi: 10.3724/SP.J.1004.2014.02926
Citation: LI Bo, SU Zhuo, LENG Cheng-Cai, WANG Sheng-Fa, LUO Xiao-Nan. Gradient Minimized Mumford-Shah Model for High-dimensional Filtering. ACTA AUTOMATICA SINICA, 2014, 40(12): 2926-2935. doi: 10.3724/SP.J.1004.2014.02926

基于混合梯度最小化Mumford-Shah模型的高维滤波算法

doi: 10.3724/SP.J.1004.2014.02926
基金项目: 

国家自然科学基金(61262050,61300083,61363049),广东省科技计划(2012B010900009),广州市科技计划(2013J4300059)资助

详细信息
    作者简介:

    李波 南昌航空大学数学与信息科学学院副教授. 主要研究方向为计算机图形学及图像处理.E-mail: libo@nchu.edu.cn

Gradient Minimized Mumford-Shah Model for High-dimensional Filtering

Funds: 

Supported by National Natural Science Foundation of China (61262050,61300083,61363049), Science and Technology Project of Guangdong Province (2012B010900009), and Science and Technology Project of Guangzhou (2013J4300059)

  • 摘要: 为解决高维滤波中存在的边缘特征模糊和细节保持问题, 创新性提出了一种基于混合梯度最小化Mumford-Shah模型的平滑算法. 通过最小化包含梯度的L0、L1范数的正则化函数, 实现边缘保持和局部光滑的滤波分解效果. 从二维图像来看, 梯度的L0范数刻画了图像中非光滑像素的个数, 最小化梯度的L0范数可以实现图像分片同质的效果, 即可对应Mumford-Shah模型中要求的边缘内部尽量均匀; 梯度的L1范数, 即全变差项, 刻画了图像中所有水平集的长度, 最小化梯度的L1范数可以实现控制图像边缘锐利度的目的, 即Mumford-Shah模型中关于图像边缘保持的约束. 由于Mumford-Shah模型具有鲁棒的信号平滑和边缘特征描述能力, 因此在进行高维信号分解等处理时,可以取得良好分离效果. 实验结果表明, 混合梯度Mumford-Shah模型在滤波过程中可以实现边缘保持和纹理平滑相统一的特性, 获得优异的图像结构纹理分解效果, 对多个图像应用的处理效果有显著的提升, 在三维网格数据上也获得良好的去噪性能.
  • [1] Xu L, Yan Q, Xia Y, Jia J Y. Structure extraction from texture via relative total variation. ACM Transactions on Graphics, 2012, 31(6): 1-10
    [2] Spratling M W. Image segmentation using a sparse coding model of cortical area V1. IEEE Transactions on Image Processing, 2013, 22(4): 1631-1643
    [3] Tan Le-Yi, Wang Shou-Jue. A fast image segmentation based on path-based similarity and dual super-pixel sets. Acta Automatica Sinica, 2013, 39(10): 1653-1664(谭乐怡, 王守觉. 基于双重超像素集的快速路径相似度图像分割算法. 自动化学报, 2013, 39(10): 1653-1664)
    [4] Yao Ting-Ting, Xie Zhao. Top-down inference with relabeling and mapping rules in hierarchical MRF for image segmentation. Acta Automatica Sinica, 2013, 39(10): 1581-1593(姚婷婷, 谢昭. 多层次MRF重标记及映射法则下的图像分割. 自动化学报, 2013, 39(10): 1581-1593)
    [5] Kim T C. Wide dynamic range technologies: for mobile imaging sensor systems. IEEE Consumer Electronics Magazine, 2014, 3(2): 30-35
    [6] Yang Q. Recursive bilateral filtering. In: Proceedings of the 12th European Conference on Computer Vision. Berlin, Heidelberg: Springer-Verlag, 2012, 7572: 399-413
    [7] Zheng Yu-Hui, Zhang Jian-Wei, Chen Yun-Jie, Sun Quan-Sen. Weighted curvature-preserving PDE based image regularization method. Acta Automatica Sinica, 2011, 37(10): 1175-1182 (郑钰辉, 张建伟, 陈允杰, 孙权森. 加权型曲率保持PDE图像滤波方法. 自动化学报, 2011, 37(10): 1175-1182)
    [8] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639
    [9] Li Bo, Su Zhi-Xun, Liu Xiu-Ping. An adaptive PDE image processing method based on Lp norm. Acta Automatica Sinica, 2008, 34(8): 849-853 (李波, 苏志勋, 刘秀平. 基于Lp范数的局部自适应偏微分方程图像恢复. 自动化学报, 2008, 34(8): 849-853)
    [10] Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In: Proceedings of the 6th International Conference on Computer Vision. Bombay: IEEE, 1998: 839-846
    [11] He K M, Sun J, Tang X O. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409
    [12] Azetsu T, Suetake N, Uchino E. Robust bilateral filter using switching median filter. IEICE Transactions on Fundamentals of Electronics, Communications, and Computer Sciences, 2013, E96-A(11): 2185-2186
    [13] Paris S, Durand F. A fast approximation of the bilateral filter using a signal processing approach. In: Proceedings of the 9th European Conference on Computer Vision. Berlin Heidelberg: Springer, 2006, 3954: 568-580
    [14] Paris S, Durand F. A fast approximation of the bilateral filter using a signal processing approach. International Journal of Computer Vision, 2009, 81(1): 24-52
    [15] Adams A, Gelfand N, Dolson J, Levoy M. Gaussian Kd-trees for fast high-dimensional filtering. ACM Transactions on Graphics, 2009, 28(3): 1-12
    [16] Gastal E S L, Oliveiray M M. Adaptive manifolds for real-time high-dimensional filtering. ACM Transactions on Graphics, 2012, 31(4): 1-13
    [17] Farbman Z, Fattal R, Lischinski D, Szeliski R. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transactions on Graphics, 2008, 27(3): 1-10
    [18] Subr K, Soler C, Durand F. Edge-preserving multiscale image decomposition based on local extrema. ACM Transactions on Graphics, 2009, 28(5), 1-9
    [19] Bhat P, Curless B, Cohen M, Zitnick C L. Fourier analysis of the 2D screened poisson equation for gradient domain problems. In: Proceedings of the 2008 European Conference on Computer Vision. Berlin Heidelberg: Springer, 2008, 5303: 114-128
    [20] Bhat P, Zitnick C L, Cohen M, Curless B. GradientShop: A gradient-domain optimization framework for image and video filtering. ACM Transactions on Graphics, 2010, 29(2): 1-14
    [21] Xu L, Lu C W, Xu Y, Jia J Y. Image smoothing via l0 gradient minimization. ACM Transactions on Graphics, 2011, 30(6): 1-12
    [22] Su Z, Luo X N, Deng Z J, Liang Y, Ji Z. Edge-preserving texture suppression filter based on joint filtering schemes. IEEE Transactions on Multimedia, 2013, 15(3): 535-548
    [23] Su Z, Luo X N, Artusi A. A novel image decomposition approach and its applications. The Visual Computer, 2013, 29(10): 1011-1023
    [24] Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-685
    [25] Chan T F, Vese L A. An efficient variational multi-phase motion for the Mumford-Shah segmentation model. In: Proceedings of the 34th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA: IEEE, 2000, 1: 490-494
    [26] Pock T, Cremers D, Bischof H, Chambolle A. An algorithm for minimizing the Mumford-Shah functional. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto: IEEE, 2009. 1133-1140
    [27] El-Zehiry N Y, Grady L. Combinatorial optimization of the discretized multi-phase Mumford-Shah functional. International Journal of Computer Vision, 2013, 104(3): 270-285
    [28] Chan T F, Vese L A. A level set algorithm for minimizing the Mumford-Shah functional in image processing. In: Proceedings of the 2001 IEEE Workshop on Variational and Level Set Methods in Computer Vision. Vancouver, BC: IEEE, 2001. 161-168
    [29] Goldstein T, Osher S. The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343
    [30] Su Z, Luo X, Zeng K, Liu L. Corruptive artifacts suppression for example-based color transfer. IEEE Transactions on Multimedia, 2014, 16(4): 988-999
    [31] Paris S, Hasinoff S W, Kautz J. Local Laplacian filters: edge-aware image processing with a Laplacian pyramid. ACM Transactions on Graphics, 2011, 30(4): 1-12
    [32] Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising. ACM Transactions on Graphics, 2003, 22(3): 950-953
    [33] Zheng Y, Fu H, Au O K C, Tai C. Bilateral normal filtering for mesh denoising. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(10): 1521-1530
  • 加载中
计量
  • 文章访问数:  1485
  • HTML全文浏览量:  67
  • PDF下载量:  1129
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-16
  • 修回日期:  2014-03-24
  • 刊出日期:  2014-12-20

目录

    /

    返回文章
    返回