2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进在线多示例学习算法的机器人目标跟踪

王丽佳 贾松敏 李秀智 王爽

王丽佳, 贾松敏, 李秀智, 王爽. 基于改进在线多示例学习算法的机器人目标跟踪. 自动化学报, 2014, 40(12): 2916-2925. doi: 10.3724/SP.J.1004.2014.02916
引用本文: 王丽佳, 贾松敏, 李秀智, 王爽. 基于改进在线多示例学习算法的机器人目标跟踪. 自动化学报, 2014, 40(12): 2916-2925. doi: 10.3724/SP.J.1004.2014.02916
WANG Li-Jia, JIA Song-Min, LI Xiu-Zhi, WANG Shuang. Person Following for Mobile Robot Using Improved Multiple Instance Learning. ACTA AUTOMATICA SINICA, 2014, 40(12): 2916-2925. doi: 10.3724/SP.J.1004.2014.02916
Citation: WANG Li-Jia, JIA Song-Min, LI Xiu-Zhi, WANG Shuang. Person Following for Mobile Robot Using Improved Multiple Instance Learning. ACTA AUTOMATICA SINICA, 2014, 40(12): 2916-2925. doi: 10.3724/SP.J.1004.2014.02916

基于改进在线多示例学习算法的机器人目标跟踪

doi: 10.3724/SP.J.1004.2014.02916
基金项目: 

国家自然科学基金(61175087,61105033),国家教育部留学回国人员科研启动基金,北京市自然科学基金重点项目(KZ201110005004)资助

详细信息
    作者简介:

    王丽佳 北京工业大学电子信息与控制工程学院博士研究生. 2008 年获得郑州大学硕士学位. 主要研究方向为机器视觉, 目标跟踪.E-mail: wanglijia1981@hotmail.com

    通讯作者:

    贾松敏 北京工业大学电子信息与控制工程学院教授. 2002 年获得日本国立电气通信大学博士学位. 主要研究方向为机器人分散控制, 机器视觉. 本文通信作者. E-mail: jsm@bjut.edu.cn

Person Following for Mobile Robot Using Improved Multiple Instance Learning

Funds: 

Supported by National Natural Science Foundation of China (61175087, 61105033), Scientific Research Starting Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China, and the Key Program of Beijing Natural Science Foundation (KZ201110005004)

  • 摘要: 提出基于改进的在线多示例学习算法(Improved multiple instance learning, IMIL)的移动机器人目标跟踪方法. 该方法利用射频识别系统(Radio frequency identification, RFID)粗定位IMIL算法的搜索区域, 然后应用IMIL算法实现目标跟踪. 该方法保证了机器人跟踪系统的连续性, 解决了目标突然转弯时的跟踪问题. IMIL算法采用从低维空间提取的压缩特征描述包中示例, 以降低算法耗时. 通过最大化弱分类器与极大似然概率的内积, 选择判别能力强的弱分类器, 避免了弱分类器选择过程中多次计算包概率和示例概率, 进一步提高算法的实时处理能力. 计算包概率时该算法平等对待各示例, 保证概率高的示例对包概率的贡献度, 克服跟踪漂移问题. 跟踪过程中, 结合当前跟踪结果与目标模板间的相似性分数在线实时调整分类器, 提高了算法的自适应能力. 最后将本文方法在视频和移动机器人上进行实验. 实验结果表明, 该方法在目标运动突变及外观改变时具有较强的鲁棒性和准确性, 并满足系统的实时性要求.
  • [1] Takashi Y, Nishiyama M, Sonoura T, Nakamoto H, Tokura S, Sato H, Ozaki F, Matsuhira N, Mizoguchi H. Development of a person following robot with vision based target detection. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006. 5286-5291
    [2] Takemura H, Zentaro N, Mizoguchi H. Development of vision based person following module for mobile robots in/out door environment. In: Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics. Guilin, China: IEEE, 2009. 1675-1680
    [3] Yun W H, Kim D, Lee J. Person following with obstacle avoidance based on multi-layered mean shift and force field method. In: Proceedings of the 2010 IEEE International Conference on Systems. Istanbul: IEEE, 2010. 3813-3816
    [4] Bellotto N, Hu H. Multimodal perception and recognition of humans with a mobile service robot. In: Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2008. 401-406
    [5] Martínez-Otzeta J M, Ibarguren A, Ansuategi A, Tubío C, Aristondo J. People following behaviour in an industrial environment using laser and stereo camera. In: Proceedings of the 23rd International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems. Berlin, Heidelberg: Springer-Verlag, 2010. 508-517
    [6] Quadah N, Cadenat V, Lerasle F, Hamerlain M, Germa T, Boudjema F. Multi-sensor-based control strategy for initiating and maintaining interaction between a robot and a human. Advanced Robotics, 2011, 25(9-10): 1249-1270
    [7] Andreas E, Bastian L, Konrad S, Luc van G. Robust multiperson tracking from a mobile platform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(10): 1831-1846
    [8] Choi W, Pantofaru C, Silvio S. A general framework for tracking multiple people from a moving camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(7): 1577-1591
    [9] Mekonnen A A, Lerasle F, Herbulot A. Cooperative passers-by tracking with a mobile robot and external cameras. Computer Vision and Image Understanding, 2013, 117(10): 1229-1244
    [10] Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632
    [11] Wang Meng, Dai Ya-Ping, Wang Qing-Lin. A novel FAST-Snake object tracking approach. Acta Automatica Sinica, 2014, 40(6): 1108-1115 (王蒙, 戴亚平, 王庆林. 一种新的FAST-Snake目标跟踪方法. 自动化学报, 2014, 40(6): 1108-1115)
    [12] Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. In: Proceedings of the 2000 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC, USA: IEEE, 2000. 142-149
    [13] Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2006. 798-805
    [14] Liu X M, Yu T. Gradient feature selection for online boosting. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, USA: IEEE, 2007. 1-8
    [15] Avidan S. Ensemble tracking. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 494-501
    [16] Collins R T, Liu Y X, Leordeanu M. Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631-1643
    [17] Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting. In: Proceedings of the 17th British Machine Vision Conference. Guildford: BMVA Press, 2006. 47-56
    [18] Zhang K H, Zhang L, Yang M H. Real-time compressive tracking. In: Proceedings of the 2012 European Conference on Computer Vision, Berlin, Heidelberg: Springer-Verlag, 2012. 866-879
    [19] Grabner H, Leistner C, Bischof H. Semi-supervised on-line boosting for robust tracking. In: Proceedings of the 10th European Conference on Computer Vision. Berlin, Heidelberg: Springer-Verlag, 2008. 234-247
    [20] Zhang K H, Song H H. Real-time visual tracking via online weighted multiple instance learning. Pattern Recognition, 2013, 46(1): 397-411
    [21] Ding Jian-Rui, Huang Jian-Hua, Liu Jia-Feng, Zhang Ying-Tao. Combining local features and multi-instance learning for ultrasound image classification. Acta Automatica Sinica, 2013, 39(6): 861-867(丁建睿, 黄碱化, 刘家锋, 张英涛. 局部特征与多示例学习结合的超声图像分类方法. 自动化学报, 2013, 39(6): 861-867
    [22] Liu Yu, Zhu Zhi-Yuan, Guan Qiang, Yang Yi-Ping. Research on experimental-design-based RFID application combinatorial testing optimization. Acta Automatica Sinica 2010, 36(12): 1674-1680(刘禹, 朱智源, 关强, 杨一平. 基于试验设计的RFID应用组合测试优化研究. 自动化学报, 2010, 36(12): 1674-1680)
    [23] Su Lian-Cheng, Zhu Feng. Design of a novel omnidirectional stereo vision system. Acta Automatica Sinica, 2006, 32(1): 67-72(苏连成, 朱枫. 一种新的全向立体视觉系统的设计. 自动化学报, 2006, 32(1): 62-72)
    [24] Jia S M, Sheng J B, Takase K. Obstacle recognition for a service mobile robot based on RFID with multi-antenna and stereo vision. In: Proceedings of the 2008 IEEE International Conference on Information and Automation. Changsha, China: IEEE, 2008. 125-130
    [25] Satake J, Miura J. Stereo-based multi-person tracking using overlapping silhouette templates. In: Proceedings of the 20th International Conference on Pattern Recognition. Istanbul: IEEE, 2010. 4304-4307
    [26] Zhang Juan, Pan Jian-Shou, Wu Ya-Peng, Liu Ji-Yan. Tracking and measurement of moving object in binocular stereo vision. Computer Engineering and Application, 2009, 45(25): 191-194(张娟, 潘建寿, 吴亚鹏, 刘继艳. 基于双目视觉的运动目标跟踪与测量. 计算机工程与应用, 2009, 45(25): 191-194)
    [27] Jia S M, Wang S, Wang L J, Li X Z. Robust human detecting and tracking using varying scale template matching. In: Proceedings of the 2012 IEEE International Conference on Information and Automation. Shenyang, China: IEEE, 2012. 25-30
  • 加载中
计量
  • 文章访问数:  1627
  • HTML全文浏览量:  93
  • PDF下载量:  2188
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-19
  • 修回日期:  2014-07-16
  • 刊出日期:  2014-12-20

目录

    /

    返回文章
    返回