[1]
|
Yang Xing-Jun, Chi Hui-Sheng. Digital Processing of Speech Signals. Beijing: Electronic Industry Press, 1995. 330-331(杨行竣, 迟惠生. 语音信号数字处理. 北京: 电子工业出版牡, 1995. 330-331)
|
[2]
|
Chen S F, Goodman J. An empirical study of smoothing techniques for language modeling. In: Proceedings of the 34th Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics. Santa Cruz, CA, 1996. 310-318
|
[3]
|
Allauzen C, Riley M. Bayesian language model interpolation for mobile speech input. In: Proceedings of the 2011 Interspeech. Italy, 2011. 1429-1432
|
[4]
|
Khudanpur S, Wu J. A maximum entropy language model integrating n-grams and topic dependencies for conversational speech recognition. In: Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Phoenix, AZ: IEEE, 1999. 553-556
|
[5]
|
Schwenk H. CSLM —— a modular open-source continuous space language modeling toolkit. In: Proceedings of the 2013 Interspeech. Lyyon, France, 2013. 1198-1202
|
[6]
|
Mikolov T, Karafiát M, Burget L, Černocký J H, Khudanpur S. Recurrent neural network based language model. In: Proceedings of the 2010 INTERSPEECH. Lyon, France: ISCA, 2010. 1045-1048
|
[7]
|
Mikolov T, Deoras A, Kombrink S, Burget L, Cernocky J H. Empirical evaluation and combination of advanced language modeling techniques. In: Proceedings of the 2011 Interspeech. Italy, 2011. 605-608
|
[8]
|
Liu X, Wang Y, Chen X, Gales M J F, Woodland P C. Efficient lattice rescoring using recurrent neural network language models. In: Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). FLORENCE, ITALY, 2014. 4941-4945
|
[9]
|
Huang Yun-Zhu, Wei Wei, Luo Yang-Yu, Li Cheng-Rong. Word-class expansion method about training corpus of language modal in restrcited domain. Application of Computer System, 2011, 20(11): 55-58 (黄韵竹, 韦玮, 罗杨宇, 李成荣. 限定领域语言模型训练语料的词类扩展方法. 计算机系统应用, 2011, 20(11): 55-58)
|
[10]
|
Bengio Y, Boulanger-Lewandowski N, Pascanu R. Advances in optimizing recurrent networks. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, Canada: IEEE, 2013. 8624-8628
|
[11]
|
Sutskever Ilya. Training Recurrent Neural Networks [Ph.D. dissertation], University of Toronto, Canada, 2013.
|
[12]
|
Si Y J, Zhang Z, Li T, Pan J, Yan Y. Enhanced word classing for recurrent neural network language model. Journal of Information & Computational Science, 2013, 10(12): 3595-3604
|
[13]
|
Shao J, Li T, Zhang Q Q, Zhao Q W, Yan Y H. A one-pass real-time decoder using memory-efficient state network. IEICE Transactions on Information and Systems, 2008, 1(91): 529-537
|
[14]
|
Mikolov T, Kombrink S, Deoras A, Burget L, Cernocky J H. RNNLM-Recurrent neural network language modeling toolkit. In: Proceedings of the 2011 IEEE Workshop on Automatic Speech Recognition and Understanding, UK, 2011. 16-19
|
[15]
|
Shao Jian. Chinese Spoken Term Detection towards Large-Scale Telephone Conversational Speech [Ph.D. dissertation]. Institute of Acoustics, Chinese Academy of Sciences, China, 2008. (邵建. 面向大规模电话交谈语音的汉语语音检索[博士学位论文], 中国科学院声学研究所, 中国, 2008.)
|