[1]
|
Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11): 1933-1943(周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述. 自动化学报, 2013, 39(11): 1933-1943)
|
[2]
|
Koller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques. Cambridge: MIT Press, 2009.
|
[3]
|
Larrañaga P, Moral S. Probabilistic graphical models in artificial intelligence. Applied Soft Computing, 2011, 11(2): 1511-1528
|
[4]
|
Jensen F V, Nielsen T D. Bayesian Networks and Decision Graphs (2nd Edition). New York: Springer, 2007.
|
[5]
|
Pearl J. Causality: Models, Reasoning and Inference (2nd Edition). New York: Cambridge University Press, 2009.
|
[6]
|
Zhang Q. Dynamic uncertain causality graph for knowledge representation and reasoning: discrete DAG cases. Journal of Computer Science and Technology, 2012, 27(1): 1-23
|
[7]
|
Zhang Q, Dong C L, Cui Y, Yang Z H. Dynamic uncertain causality graph for knowledge representation and probabilistic reasoning: statistics base, matrix, and application. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4): 645-663
|
[8]
|
Dong C L, Wang Y J, Zhang Q, Wang N Y. The methodology of dynamic uncertain causality graph for intelligent diagnosis of vertigo. Computer Methods and Programs in Biomedicine, 2014, 113(1): 162-174
|
[9]
|
Dong C L, Zhang Q, Geng S C. A modeling and probabilistic reasoning method of dynamic uncertain causality graph for industrial fault diagnosis. International Journal of Automation and Computing, 2014, 11(3): 288-298
|
[10]
|
Cheng Qiang, Chen Feng, Dong Jian-Wu, Xu Wen-Li. Variational approximate inference methods for graphical models. Acta Automatica Sinica, 2012, 38(11): 1721-1734(程强, 陈峰, 董建武, 徐文立. 概率图模型中的变分近似推理方法. 自动化学报, 2012, 38(11): 1721-1734)
|
[11]
|
Yuan C, Lim H, Lu T C. Most relevant explanation in bayesian networks. Journal of Artificial Intelligence Research, 2011, 42: 309-352
|
[12]
|
Yap G E, Tan A H, Pang H H. Explaining inferences in Bayesian networks. Applied Intelligence, 2007, 29(3): 263- 278
|
[13]
|
Vomlelová M, Vomlel J. Troubleshooting: NP-hardness and solution methods. Soft Computing —— A Fusion of Foundations, Methodologies and Applications, 2003, 7(5): 357-368
|
[14]
|
He H C, Wang H, Liu Y H, Wang Y J, Du Y W. Principle of Universal Logics. Beijing: Science Press, 2006.
|
[15]
|
Novák V. Reasoning about mathematical fuzzy logic and its future. Fuzzy Sets and Systems, 2012, 192: 25-44
|
[16]
|
He Hua-Can, He Zhi-Tao, Wang Hua. On the second revolution of mathematical logic. CAAL Transactions on Intelligent Systems, 2006, 1(1): 29-37(何华灿, 何智涛, 王华. 论第二次数理逻辑革命. 智能系统学报, 2006, 1(1): 29-37)
|
[17]
|
Li Wei. Mathematical Logic: Fundamental Principles and Formal Calculus. Beijing: Science Press, 2008.(李未. 数理逻辑: 基本原理与形式演算. 北京: 科学出版社, 2008.)
|
[18]
|
Xu Y, Qin K, Liu J, Song Z. L-valued propositional logic Lvpl. Information Sciences, 1999, 114(1-4): 205-235
|
[19]
|
Xu Y, Ruan D, Qin K, Liu J. Lattice-Valued Logic —— An Alternative Approach to Treat Fuzziness and Incomparability. Studies in Fuzziness and Soft Computing. Berlin: Springer, 2003.
|
[20]
|
Lai J J, Xu Y. Linguistic truth-valued lattice-valued propositional logic system LP(X) based on linguistic truth-valued lattice implication algebra. Information Sciences, 2010, 180(10): 1990-2002
|
[21]
|
Pfeffer A. Sufficiency, separability and temporal probabilistic models. In: Proceedings of the 17th Annual Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001. 421-428
|
[22]
|
Zhou Zhe, Xu Xiao-Bin, Wen Cheng-Lin, Lv Feng. An optimal method for combining conflicting evidences. Acta Automatica Sinica, 2012, 38(6): 976-985(周哲, 徐晓滨, 文成林, 吕锋. 冲突证据融合的优化方法. 自动化学报, 2012, 38(6): 976-985)
|