[1]
|
Chaumette F, Hutchinson S. Visual servo control Part I: basic approaches. IEEE Robotics and Automation Magazine, 2006, 13(4): 82-90
|
[2]
|
Hu G, MacKunis W, Gans N, Dixon W, Chen J, Behal A, Dawson D. Homography-based visual servo control with imperfect camera calibration. IEEE Transactions on Automatic Control, 2009, 54(6): 1318-1324
|
[3]
|
Liu Y H, Wang H, Chen W, Zhou D. Adaptive visual servoing using common image features with unknown geometric parameters. Automatica, 2013, 49(8): 2453-2460.
|
[4]
|
Chesi G, Shen T T. Conferring robustness to path-planning for image-based control. IEEE Transactions on Control Systems Technology, 2012, 20(4): 950-959
|
[5]
|
Gans N R, Hu G, Shen J, Zhang Y, Dixon W. Adaptive visual servo control to simultaneously stabilize image and pose error. Mechatronics, 2012, 22(4): 410-422
|
[6]
|
Ma Hong-Yu, Su Jian-Bo. Uncalibrated robotic 3D hand-eye coordination based on auto disturbance rejection controller. Acta Automatica Sinica, 2004, 30(3): 400-406(马红雨, 苏剑波. 基于自抗扰控制器的机器人无标定三维手眼协调. 自动化学报, 2004, 30(3): 400-406)
|
[7]
|
Jean J H, Lian F L. Robust visual servo control of a mobile robot for object tracking using shape parameters. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1461-1472
|
[8]
|
Wang Y, Lang H X, Silva C W. A hybrid visual servo controller for robust grasping by wheeled mobile robots. IEEE/ASME Transactions on Mechatronics, 2010, 15(5): 757-769
|
[9]
|
Cherubini A, Chaumette F. Visual navigation of a mobile robot with laser-based collision avoidance. The International Journal of Robotic Research, 2013, 32(2): 189-205
|
[10]
|
Yang F, Wang C L. Adaptive stabilization for uncertain nonholonomic dynamic mobile robots based on visual servoing feedback. Acta Automatica Sinica, 2011, 37(7): 857-864
|
[11]
|
Oriolo G, Luca D A, Vendittelli M. WMR via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Transactions on Control System Technology, 2002, 10(6): 835-852
|
[12]
|
Dixon W E, Queiroz de M S, Dawson D M, Flynn T J. Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity. IEEE Transactions on Control Systems Technology, 2004, 12(1): 138-147
|
[13]
|
Cao Zheng-Cai, Yin Long-Jie, Fu Yi-Li, Liu Tian-Long. Predictive control for visual servo stabilization of nonholonomic mobile robots. Acta Automatica Sinica, 2013, 39(8): 1238-1245 (曹政才, 殷龙杰, 付宜利, 刘天龙. 基于预测控制的非完整移动机器人视觉伺服镇定. 自动化学报, 2013, 39(8): 1238-1245)
|
[14]
|
Janabi-Sharifi F, Deng L, Wilson W J. Comparison of basic visual servoing methods. IEEE/ASME Transactions on Mechatronics, 2011, 16(5): 967-983
|
[15]
|
Luca A D, Oriolo G, Giordano P R. Feature depth observation for image-based visual servoing: theory and experiments. International Journal of Robotic Research, 2008, 27(10): 1093-1116
|
[16]
|
Fang Y, Dixon W E, Dawson D M, Chawda P. Homography-based visual servo regulation of mobile robots. IEEE Transactions on Systems, Man, and Cybernetics, Part B —— Cybernetics, 2005, 35(5): 1041-1050
|
[17]
|
Zhang X B, Fang Y C, Liu X. Motion-estimation-based visual servoing of nonholonomic mobile robots. IEEE Transactions on Robotics, 2011, 27(6): 1167-1175
|
[18]
|
Lopez-Nicolas G, Gans N R, Bhattacharya S, Sagues C, Guerrero J J, Hutchinson S. Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints. IEEE Transactions on Systems, Man, and Cybernetics, Part B —— Cybernetics, 2010, 40(4): 1115-1127
|
[19]
|
Fang Y C, Liu X, Zhang X B. Adaptive active visual servoing of nonholonomic mobile robots. IEEE Transactions on Industrial Electronics, 2012, 59(1): 486-497
|
[20]
|
Li Bao-Quan, Fang Yong-Chun, Zhang Xue-Bo, He Wan-Feng. Selection-strategy-based visual servo regulation of wheeled mobile robots. Journal of Systems Science and Mathematical Sciences, 2012, 32(6): 750-767 (李宝全, 方勇纯, 张雪波, 何万峰. 基于选择策略的移动机器人视觉伺服镇定方法. 系统科学与数学, 2012, 32(6): 750-767)
|
[21]
|
Mariottini G L, Oriolo G, Prattichizzo D. Image-based visual servoing for nonholonomic mobile robots using epipolar geometry. IEEE Transactions on Robotics, 2007, 23(1): 87-100
|
[22]
|
Becerra H M, Lopez-Nicolas G, Sagues C. A sliding-mode-control law for mobile robots based on epipolar visual servoing from three views. IEEE Transactions on Robotics, 2011, 27(1): 175-183
|
[23]
|
Li B Q, Fang Y C, Zhang X B. Uncalibrated visual servoing of nonholonomic mobile robots. In: Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan: IEEE, 2013. 584-589
|
[24]
|
Hartley R, Zisserman A. Multiple View Geometry in Computer Vision (2nd Edition). Cambridge: Cambridge University Press, 2003
|
[25]
|
Guerrero J J, Murillo A C, Sagues C. Localization and matching using the planar trifocal tensor with bearing only data. IEEE Transactions on Robotics, 2008, 24(2): 494-501
|
[26]
|
Becerra H M, Sagues C. Exploiting the trifocal tensor in dynamic pose estimation for visual control. IEEE Transactions on Control System Technology, 2013, 21(5): 1931-1939
|
[27]
|
Becerra H M, Lopez-Nicolas G, Sagues C. Omnidirectional visual control of mobile robots based on the 1D trifocal tensor. Robotics and Autonomous Systems, 2010, 58(6): 796-808
|
[28]
|
Lopez-Nicolas G, Guerrero J J, Sagues C. Visual control through the trifocal tensor for nonholonomic robots. Robotics and Autonomous Systems, 2010, 58(2): 216-226
|
[29]
|
Dixon W E, Dawson D M, Zergeroglu E, Behal A. Nonlinear Control of Wheeled Mobile Robots. Berlin, Germany: Springer-Verlag, 2001
|
[30]
|
Craig J J. Introduction to Robotics: Mechanics and Control (3rd Edition). NJ: Prentice-Hall, 2005
|
[31]
|
Slotine J J, Li W. Applied Nonlinear Control. Englewood Cliff, NJ: Prentice Hall, Inc., 1991
|