2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于2D三焦点张量的移动机器人视觉伺服镇定控制

李宝全 方勇纯 张雪波

李宝全, 方勇纯, 张雪波. 基于2D三焦点张量的移动机器人视觉伺服镇定控制. 自动化学报, 2014, 40(12): 2706-2715. doi: 10.3724/SP.J.1004.2014.02706
引用本文: 李宝全, 方勇纯, 张雪波. 基于2D三焦点张量的移动机器人视觉伺服镇定控制. 自动化学报, 2014, 40(12): 2706-2715. doi: 10.3724/SP.J.1004.2014.02706
LI Bao-Quan, FANG Yong-Chun, ZHANG Xue-Bo. 2D Trifocal Tensor Based Visual Servo Regulation of Nonholonomic Mobile Robots. ACTA AUTOMATICA SINICA, 2014, 40(12): 2706-2715. doi: 10.3724/SP.J.1004.2014.02706
Citation: LI Bao-Quan, FANG Yong-Chun, ZHANG Xue-Bo. 2D Trifocal Tensor Based Visual Servo Regulation of Nonholonomic Mobile Robots. ACTA AUTOMATICA SINICA, 2014, 40(12): 2706-2715. doi: 10.3724/SP.J.1004.2014.02706

基于2D三焦点张量的移动机器人视觉伺服镇定控制

doi: 10.3724/SP.J.1004.2014.02706
基金项目: 

国家自然科学基金(61203333),教育部高等学校博士学科点专项科研基金项目(20120031120040),天津市应用基础与前沿技术研究计划(13JCQNJC03200)资助

详细信息
    作者简介:

    李宝全 南开大学机器人与信息自动化研究所博士研究生. 2010 年于南开大学获得工学学士学位. 2013 年至2014 年于新加坡南洋理工大学公派联合培养.主要研究方向为计算机视觉, 视觉伺服和移动机器人.E-mail: libq@robot.nankai.edu.cn

    通讯作者:

    方勇纯 南开大学机器人与信息自动化研究所教授. 2002 年于美国克莱姆森大学获得博士学位. 主要研究方向为视觉伺服, 微纳米控制系统, 非线性控制以及欠驱动系统控制. 本文通信作者.E-mail: yfang@robot.nankai.edu.cn

2D Trifocal Tensor Based Visual Servo Regulation of Nonholonomic Mobile Robots

Funds: 

Supported by National Natural Science Foundation of China (61203333), Specialized Research Fund for the Doctoral Program of Higher Education of China (20120031120040), and Tianjin Research Program of Application Foundation and Advanced Technology (13JCQNJC03200)

  • 摘要: 针对单目视觉移动机器人系统, 本文提出了一种基于二维三焦点张量(2D trifocal tensor, 2DTT)的视觉伺服镇定控制方法. 具体而言, 首先描述了2D三焦点张量的导出过程, 并给出了基于图像特征点的估计方法. 在此基础上根据2D三焦点张量的元素, 设计了一种反馈线性化控制器以实现机器人的位置镇定, 以及一种比例控制器来实现姿态镇定, 因而在场景信息与平移信息均未知情况下完成了移动机器人的视觉镇定控制. 通过理论分析证明了本文设计的镇定控制算法具有指数收敛性能. 相比现有方法, 这种基于2D 三焦点张量的方法在图像特征识别方面具有更强的鲁棒性, 并且在平面场景与立体场景情况下均适用. 最后利用仿真与实验结果验证了本文提出的视觉伺服方法的优良性能.
  • [1] Chaumette F, Hutchinson S. Visual servo control Part I: basic approaches. IEEE Robotics and Automation Magazine, 2006, 13(4): 82-90
    [2] Hu G, MacKunis W, Gans N, Dixon W, Chen J, Behal A, Dawson D. Homography-based visual servo control with imperfect camera calibration. IEEE Transactions on Automatic Control, 2009, 54(6): 1318-1324
    [3] Liu Y H, Wang H, Chen W, Zhou D. Adaptive visual servoing using common image features with unknown geometric parameters. Automatica, 2013, 49(8): 2453-2460.
    [4] Chesi G, Shen T T. Conferring robustness to path-planning for image-based control. IEEE Transactions on Control Systems Technology, 2012, 20(4): 950-959
    [5] Gans N R, Hu G, Shen J, Zhang Y, Dixon W. Adaptive visual servo control to simultaneously stabilize image and pose error. Mechatronics, 2012, 22(4): 410-422
    [6] Ma Hong-Yu, Su Jian-Bo. Uncalibrated robotic 3D hand-eye coordination based on auto disturbance rejection controller. Acta Automatica Sinica, 2004, 30(3): 400-406(马红雨, 苏剑波. 基于自抗扰控制器的机器人无标定三维手眼协调. 自动化学报, 2004, 30(3): 400-406)
    [7] Jean J H, Lian F L. Robust visual servo control of a mobile robot for object tracking using shape parameters. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1461-1472
    [8] Wang Y, Lang H X, Silva C W. A hybrid visual servo controller for robust grasping by wheeled mobile robots. IEEE/ASME Transactions on Mechatronics, 2010, 15(5): 757-769
    [9] Cherubini A, Chaumette F. Visual navigation of a mobile robot with laser-based collision avoidance. The International Journal of Robotic Research, 2013, 32(2): 189-205
    [10] Yang F, Wang C L. Adaptive stabilization for uncertain nonholonomic dynamic mobile robots based on visual servoing feedback. Acta Automatica Sinica, 2011, 37(7): 857-864
    [11] Oriolo G, Luca D A, Vendittelli M. WMR via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Transactions on Control System Technology, 2002, 10(6): 835-852
    [12] Dixon W E, Queiroz de M S, Dawson D M, Flynn T J. Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity. IEEE Transactions on Control Systems Technology, 2004, 12(1): 138-147
    [13] Cao Zheng-Cai, Yin Long-Jie, Fu Yi-Li, Liu Tian-Long. Predictive control for visual servo stabilization of nonholonomic mobile robots. Acta Automatica Sinica, 2013, 39(8): 1238-1245 (曹政才, 殷龙杰, 付宜利, 刘天龙. 基于预测控制的非完整移动机器人视觉伺服镇定. 自动化学报, 2013, 39(8): 1238-1245)
    [14] Janabi-Sharifi F, Deng L, Wilson W J. Comparison of basic visual servoing methods. IEEE/ASME Transactions on Mechatronics, 2011, 16(5): 967-983
    [15] Luca A D, Oriolo G, Giordano P R. Feature depth observation for image-based visual servoing: theory and experiments. International Journal of Robotic Research, 2008, 27(10): 1093-1116
    [16] Fang Y, Dixon W E, Dawson D M, Chawda P. Homography-based visual servo regulation of mobile robots. IEEE Transactions on Systems, Man, and Cybernetics, Part B —— Cybernetics, 2005, 35(5): 1041-1050
    [17] Zhang X B, Fang Y C, Liu X. Motion-estimation-based visual servoing of nonholonomic mobile robots. IEEE Transactions on Robotics, 2011, 27(6): 1167-1175
    [18] Lopez-Nicolas G, Gans N R, Bhattacharya S, Sagues C, Guerrero J J, Hutchinson S. Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints. IEEE Transactions on Systems, Man, and Cybernetics, Part B —— Cybernetics, 2010, 40(4): 1115-1127
    [19] Fang Y C, Liu X, Zhang X B. Adaptive active visual servoing of nonholonomic mobile robots. IEEE Transactions on Industrial Electronics, 2012, 59(1): 486-497
    [20] Li Bao-Quan, Fang Yong-Chun, Zhang Xue-Bo, He Wan-Feng. Selection-strategy-based visual servo regulation of wheeled mobile robots. Journal of Systems Science and Mathematical Sciences, 2012, 32(6): 750-767 (李宝全, 方勇纯, 张雪波, 何万峰. 基于选择策略的移动机器人视觉伺服镇定方法. 系统科学与数学, 2012, 32(6): 750-767)
    [21] Mariottini G L, Oriolo G, Prattichizzo D. Image-based visual servoing for nonholonomic mobile robots using epipolar geometry. IEEE Transactions on Robotics, 2007, 23(1): 87-100
    [22] Becerra H M, Lopez-Nicolas G, Sagues C. A sliding-mode-control law for mobile robots based on epipolar visual servoing from three views. IEEE Transactions on Robotics, 2011, 27(1): 175-183
    [23] Li B Q, Fang Y C, Zhang X B. Uncalibrated visual servoing of nonholonomic mobile robots. In: Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan: IEEE, 2013. 584-589
    [24] Hartley R, Zisserman A. Multiple View Geometry in Computer Vision (2nd Edition). Cambridge: Cambridge University Press, 2003
    [25] Guerrero J J, Murillo A C, Sagues C. Localization and matching using the planar trifocal tensor with bearing only data. IEEE Transactions on Robotics, 2008, 24(2): 494-501
    [26] Becerra H M, Sagues C. Exploiting the trifocal tensor in dynamic pose estimation for visual control. IEEE Transactions on Control System Technology, 2013, 21(5): 1931-1939
    [27] Becerra H M, Lopez-Nicolas G, Sagues C. Omnidirectional visual control of mobile robots based on the 1D trifocal tensor. Robotics and Autonomous Systems, 2010, 58(6): 796-808
    [28] Lopez-Nicolas G, Guerrero J J, Sagues C. Visual control through the trifocal tensor for nonholonomic robots. Robotics and Autonomous Systems, 2010, 58(2): 216-226
    [29] Dixon W E, Dawson D M, Zergeroglu E, Behal A. Nonlinear Control of Wheeled Mobile Robots. Berlin, Germany: Springer-Verlag, 2001
    [30] Craig J J. Introduction to Robotics: Mechanics and Control (3rd Edition). NJ: Prentice-Hall, 2005
    [31] Slotine J J, Li W. Applied Nonlinear Control. Englewood Cliff, NJ: Prentice Hall, Inc., 1991
  • 加载中
计量
  • 文章访问数:  1793
  • HTML全文浏览量:  40
  • PDF下载量:  1227
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-08
  • 修回日期:  2014-06-10
  • 刊出日期:  2014-12-20

目录

    /

    返回文章
    返回