2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多层概率集的随机预测控制算法设计

李济炜 李德伟 席裕庚 卢建波

李济炜, 李德伟, 席裕庚, 卢建波. 基于多层概率集的随机预测控制算法设计. 自动化学报, 2014, 40(12): 2697-2705. doi: 10.3724/SP.J.1004.2014.02697
引用本文: 李济炜, 李德伟, 席裕庚, 卢建波. 基于多层概率集的随机预测控制算法设计. 自动化学报, 2014, 40(12): 2697-2705. doi: 10.3724/SP.J.1004.2014.02697
LI Ji-Wei, LI De-Wei, XI Yu-Geng, LU Jian-Bo. On Design of Stochastic Model Predictive Control Algorithm Based on Multi-layer Probabilistic Sets. ACTA AUTOMATICA SINICA, 2014, 40(12): 2697-2705. doi: 10.3724/SP.J.1004.2014.02697
Citation: LI Ji-Wei, LI De-Wei, XI Yu-Geng, LU Jian-Bo. On Design of Stochastic Model Predictive Control Algorithm Based on Multi-layer Probabilistic Sets. ACTA AUTOMATICA SINICA, 2014, 40(12): 2697-2705. doi: 10.3724/SP.J.1004.2014.02697

基于多层概率集的随机预测控制算法设计

doi: 10.3724/SP.J.1004.2014.02697
基金项目: 

国家自然科学基金(61374110,61333009,61221003),高等学校博士学科点专项科研基金(20120073110017),流程工业综合自动化国家重点实验室开放课题基金资助

详细信息
    作者简介:

    李济炜 上海交通大学自动化系博士研究生. 2011 年获上海交通大学学士学位.主要研究方向为随机预测控制.E-mail: jwlisky@gmail.com

    通讯作者:

    李德伟 上海交通大学自动化系副教授.于1993 年和2009 年获上海交通大学自动化系学士学位和博士学位. 主要研究方向为预测控制理论与算法. 本文通信作者. E-mail: dwli@sjtu.edu.cn

On Design of Stochastic Model Predictive Control Algorithm Based on Multi-layer Probabilistic Sets

Funds: 

Supported by National Natural Science Foundation of China (61374110, 61333009, 61221003), the Specialized Research Fund for the Doctoral Program of Higher Education (20120073110017), and State Key Laboratory of Synthetical Automation for Process Industries

  • 摘要: 考虑具有乘型不确定性的离散随机系统约束控制问题, 设计了一种基于多层概率集的随机预测控制算法. 多层概率集描述了状态在多步反馈控制律下的一系列不同概率的分布区域, 因此能够同时保证多个不同概率要求的软约束. 通过动态优化多步反馈律, 算法具有较大的可行范围. 之后设计的简化算法在降低计算负担的同时保证了算法的可行范围.
  • [1] Ding B C, Xi Y G, Cychowski M T, O'Mahony T. A synthesis approach for output feedback robust constrained model predictive control. Automatica, 2008, 44(1): 258-264
    [2] Li D W, Xi Y G, Zheng P Y. Constrained robust feedback model predictive control for uncertain systems with polytopic description. International Journal of Control, 2009, 82(7): 1267-1274
    [3] Li D W, Xi Y G, Gao F R. Synthesis of dynamic output feedback RMPC with saturated inputs. Automatica, 2013, 49(4): 949-954
    [4] Cheng Q F, Cannon M, Kouvaritakis B. The design of dynamics in the prediction structure of robust MPC. International Journal of Control, 2013, 86(11): 2096-2103
    [5] Zheng P Y, Li D W, Xi Y G, Zhang J. Improved model prediction and RMPC design for LPV systems with bounded parameter changes. Automatica, 2013, 49(12): 3695-3699
    [6] Yang N, Li D W, Zhang J, Xi Y G. Model predictive controller design and implementation on FPGA with application to motor servo system. Control Engineering Practice, 2012, 20(11): 1229-1235
    [7] Xi Yu-Geng, Li De-Wei, Lin Shu. Model predictive control-status and challenges. Acta Automatica Sinica, 2013, 39(3): 222-236(席裕庚, 李德伟, 林姝 . 模型预测控制——现状与挑战. 自动化学报, 2013, 39(3): 222-236)
    [8] Gershon E, Shaked U, Yaesh I. H∞ control and filtering of discrete-time stochastic systems with multi-plicative noise. Automatica, 2001, 37(3): 409-417
    [9] Elia N. Remote stabilization over fading channels. Systems & Control Letters, 2005, 54(3): 237-249
    [10] Wu Y L, Shen Z P, Liu Y Y. Mean square detectability of multi-output systems over stochastic multiplicative channels. IET Control Theory & Applications, 2012, 6(6): 796-802
    [11] Zou Y Y, Niu Y G. Predictive control of constrained linear systems with multiple missing measurements. Circuits, Systems, and Signal Processing, 2013, 32(2): 615-630
    [12] Kouvaritakis B, Cannon M, Couchman P. MPC as a tool for sustainable development integrated policy assessment. Automatic Control, IEEE Transactions on, 2006, 51(1): 145-149
    [13] Zhang W H, Huang Y L, Zhang H S. Stochastic H2/H∞ control for discrete-time systems with state and disturbance dependent noise. Automatica, 2007, 43(3): 513-521
    [14] Cannon M, Couchman P, Kouvaritakis B. MPC for stochastic systems. Assessment and Future Directions of Nonlinear Model Predictive Control. Berlin Heidelberg: Springer, 2007. 255-268
    [15] Cannon M, Kouvaritakis B, Ng D. Probabilistic tubes in linear stochastic model predictive control. Systems & Control Letters, 2009, 58(10): 747-753
    [16] Primbs J A, Sung C H. Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise. IEEE Transactions on Automatic Control, 2009, 54(2): 221-230
    [17] Cannon M, Kouvaritakis B, Wu X J. Model predictive control for systems with stochastic multi-plicative uncertainty and probabilistic constraints. Automatica, 2009, 45(1): 167-172
    [18] Li De-Wei, Xi Yu-Geng. Design of robust model predictive control based on multi-step control set. Acta Automatica Sinica, 2009, 35(4): 433-437(李德伟, 席裕庚. 基于多步控制集的鲁棒预测控制器设计. 自动化学报, 2009, 35(4): 433-437)
    [19] Williams D. Probability with Martingales. Cambridge: Cambridge University Press, 1991.
    [20] Huang He, Li De-Wei, Xi Yu-Geng. The improved robust model predictive control with mixed H2/H∞ control approach. Acta Automatica Sinica, 2012, 38(6): 944-950(黄鹤, 李德伟, 席裕庚. 基于多步控制策略的混合H2/H∞鲁棒预测控制器设计. 自动化学报, 2012, 38(6): 944-950)
    [21] Gahinet P, Nemirovskii A, Laub A J, Chilali M. The LMI control toolbox. In: Proceedings of the 33rd IEEE Conference on Decision and Control. Lake Buena Vista, FL, USA: IEEE, 1994, 3: 2038-2041
  • 加载中
计量
  • 文章访问数:  2123
  • HTML全文浏览量:  115
  • PDF下载量:  772
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-12
  • 修回日期:  2014-03-06
  • 刊出日期:  2014-12-20

目录

    /

    返回文章
    返回