[1]
|
Xing E P, Ng A Y, Jordan M I, Russell S. Distance metric learning with application to clustering with side-information. In: Proceedings of the 2003 Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2003. 521-528
|
[2]
|
Goldberger J, Roweis S, Hinton G, Salakhutdinov R. Neighbourhood components analysis. In: Proceedings of the 2004 Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2004. 513-520
|
[3]
|
Xiang S M, Nie F P, Zhang C S. Learning a Mahalanobis distance metric for data clustering and classification. Pattern Recognition, 2008, 41(12): 3600-3612
|
[4]
|
Weinberger K Q, Saul L K. Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research, 2009, 10: 207-244
|
[5]
|
Mensink T, Verbeek J, Perronnin F, Csurka G. Metric learning for large scale image classification: generalizing to new classes at near-zero cost. In: Proceedings of the 12th European Conference on Computer Vision. Florence, Italy: IEEE, 2012. 488-501
|
[6]
|
Feng Z, Jin R, Jain A. Large-scale image annotation by efficient and robust kernel metric learning. In: Proceedings of the 2013 International Conference on Computer Vision. Sydney, Australia: IEEE, 2013. 1609-1616
|
[7]
|
Wang X Y, Hua G, Han T X. Discriminative tracking by metric learning. In: Proceedings of the 11th European Conference on Computer Vision. Heraklion, Greece: Springer, 2010. 200-214
|
[8]
|
Chen J H, Zhao Z, Ye J P, Liu H. Nonlinear adaptive distance metric learning for clustering. In: Proceedings of the 2007 International Conference on Knowledge Discovery and Data Mining. California, USA: ACM, 2007. 123-132
|
[9]
|
Ye J P, Zhao Z, Liu H. Adaptive distance metric learning for clustering. In: Proceeding of the 2007 Computer Society Conference on Computer Vision and Pattern Recognition. Minnesota, USA: IEEE, 2007. 1-7
|
[10]
|
Cinbis R G, Verbeek J, Schmid C. Unsupervised metric learning for face identification in TV video. In: Proceedings of the 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 1559-1566
|
[11]
|
Wang B, Jiang J Y, Wang W, Zhou Z H, Tu Z W. Unsupervised metric fusion by cross diffusion. In: Proceedings of the 2012 Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012. 2997-3004
|
[12]
|
Mignon A, Jurie F. CMML: a new metric learning approach for cross modal matching. In: Proceedings of the 11th Asian Conference on Computer Vision. Daejeon, Korea: Springer, 2012. 14-27
|
[13]
|
Cao B, Ni X C, Sun J T, Wang G, Yang Q. Distance metric learning under covariate shift. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Barcelona, Spain: AAAI, 2011. 1204-1210
|
[14]
|
Guillaumin G, Verbeek J, Schmid C. Multiple instance metric learning from automatically labeled bags of faces. In: Proceedings of the 11th European Conference on Computer Vision. Heraklion, Greece: Springer, 2010. 634-647
|
[15]
|
Baghshah M S, Shouraki S B. Non-linear metric learning using pairwise similarity and dissimilarity constraints and the geometrical structure of data. Pattern Recognition, 2010, 43(8): 2282-2292
|
[16]
|
Yang L, Jin R, Sukthankar R. Bayesian active distance metric learning. In: Proceedings of the 23th Conference on Uncertainty in Artificial Intelligence. Vancouver, Canada: AUAI Press, 2007. 442-449
|
[17]
|
Cevikalp H. Distance metric learning by quadratic programming based on equivalence constraints. In: Proceedings of the 20th International Conference on Pattern Recognition. Istanbul, Turkey: IEEE, 2010. 3352-3355
|
[18]
|
Davis J V, Kulis B, Jain P, Sra S, Dhillon I S. Information-theoretic metric learning. In: Proceedings of the 24th International Conference. Oregon, USA: ACM, 2007. 209-216
|
[19]
|
Wang J, Do H, Woznica A, Kalousis A. Metric learning with multiple kernels. In: Proceedings of the 2001 Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2011. 1170-1178
|
[20]
|
Baghshah M S, Shouraki S B. Semi-supervised metric learning using pairwise constraints. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence. California, USA: IJCAI, 2009. 1217-1222
|
[21]
|
Zhang Y, Yeung D Y. Transfer metric learning by learning task relationships. In: Proceedings of the 16th International Conference on Knowledge Discovery and Data Mining. Washington, USA: ACM, 2010. 1199-1208
|
[22]
|
Li W, Zhao R, Wang X G. Human reidentification with transferred metric learning. In: Proceedings of the 11th Asian Conference on Computer Vision. Daejeon, Korea: Springer, 2012. 31-44
|
[23]
|
Parameswaran S B, Weinberger K Q. Large margin multi-task metric learning. In: Proceedings of the 2010 Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2010. 1867-1875
|
[24]
|
Yang P P, Huang K Z, Liu C L. A multi-task framework for metric learning with common subspace. Neural Computing and Applications, 2013, 22(7-8): 1337-1347
|
[25]
|
Yang P P, Huang K Z, Liu C. Geometry preserving multi-task metric learning. Machine Learning, 2013, 92(1): 133-175
|
[26]
|
Jin R, Wang S J, Zhou Y. Regularized distance metric learning: theory and algorithm. In: Proceedings of the 23rd Annual Conference on Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2009. 862-870
|
[27]
|
Hoi S C H, Liu W, Chang S F. Semi-supervised distance metric learning for collaborative image retrieval. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Alaska, USA: IEEE, 2008. 1-7
|
[28]
|
Shen C H, Kim J, Wang L. Scalable large-margin Mahalanobis distance metric learning. IEEE Transactions on Neural Networks, 2010, 21(9): 1524-1530
|
[29]
|
Shen C H, Kim J, Wang L. A scalable dual approach to semidefinite metric learning. In: Proceedings of the 24th Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2011. 2601-2608
|
[30]
|
Huang K Z, Ying Y M, Campbell C. GSML: a unified framework for sparse metric learning. In: Proceedings of the 9th International Conference on Data Mining. Florida, USA: IEEE, 2009. 189-198
|
[31]
|
Huang K Z, Ying Y M, Campbell C. Generalized sparse metric learning with relative comparisons. Knowledge and Information Systems, 2011, 28(1): 25-45
|
[32]
|
Liu W, Hoi S C H, Liu J Z. Output regularized metric learning with side information. In: Proceedings of the 10th European Conference on Computer Vision. Marseille, France: Springer, 2008. 358-371
|
[33]
|
Yang L, Jin R. Distance Metric Learning: A Comprehensive Survey, Technical Report, Michigan State University, USA. 2006, 1-51
|
[34]
|
Bar-Hillel A, Hertz T, Shental N, Weinshall D. Learning a Mahalanobis metric from equivalence constraints. Journal of Machine Learning, 2005, 6: 937-965
|
[35]
|
Mignon A, Jurie F. PCCA: a new approach for distance learning from sparse pairwise constraints. In: Proceedings of the 2012 International Conference on Computer Vision and Pattern Recognition. Providence RI: IEEE, 2012. 2666-2672
|
[36]
|
Kostinger M, Hirzer M, Wohlhart P, Roth P M, Bischof H. Large scale metric learning from equivalence constraints. In: Proceedings of the 2012 Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2012. 2288-2295
|
[37]
|
Boyd S P, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004.
|
[38]
|
Ying Y M, Li P. Distance metric learning with eigenvalue optimization. Journal of Machine Learning Research, 2013, 13(1): 1-26
|
[39]
|
Davis J V, Dhillon I S. Structured metric learning for high dimensional problems. In: Proceedings of the 14th International Conference on Knowledge Discovery and Data Mining. Las Vegas, USA: ACM, 2008. 195-203
|
[40]
|
Kulis B, Sustik M A, Dhilon I S. Learning low-rank kernel matrices. In: Proceedings of the 23rd International Conference on Machine Learning. USA: ACM, 2006. 505-512
|
[41]
|
Qi G J, Tang J H, Zha Z J, Chua T S, Zhang H J. An efficient sparse metric learning in high-dimensional space via l1-penalized log-determinant regularization. In: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009. 841-848
|
[42]
|
Cui Z, Li W, Xu D, Shan S G, Chen X L. Fusing robust face region descriptors via multiple metric learning for face recognition in the wild. In: Proceedings of the 2013 Computer Vision and Pattern Recognition. Portland, USA: IEEE, 2013. 3554-3561
|
[43]
|
Guillaumin M, Verbeek J, Schmid C. Is that you? Metric learning approaches for face identification. In: Proceedings of the 12th International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 498-505
|
[44]
|
Nguyen H V, Bai L. Cosine similarity metric learning for face verification. In: Proceedings of the 10th Asian Conference on Computer Vision. Queenstown, New Zealand: Springer, 2010. 709-720
|
[45]
|
Huang G B, Mattar M, Berg T, Erik L M. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. Technical Report, University of Massachusetts, Amherst, USA. 2007, 1-11
|
[46]
|
Ojala T, Pietikäinen M, Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987
|
[47]
|
Cao Q, Ying Y M, Li P. Similarity metric learning for face recognition. In: Proceedings of the 2013 International Conference on Computer Vision. Sydney: IEEE, 2013. 2408-2415
|
[48]
|
Wang S J, Jin R. An information geometry approach for distance metric learning. In: Proceedings of the 2009 International Conference on Artificial Intelligence and Statistics. Florida, USA: AISTATS, 2009. 591-598
|
[49]
|
Samaria F S, Harter A C. Parameterisation of a stochastic model for human face identification. In: Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision. Sarasota, USA: IEEE, 1994. 138-142
|
[50]
|
Verma Y, Jawahar C V. Image annotation using metric learning in semantic neighbourhoods. In: Proceedings of the 12th European Conference on Computer Vision. Florence, Italy: Springer, 2012. 836-849
|
[51]
|
Shen C H, Kim J, Wang L, Hengel A. Positive semidefinite metric learning using boosting-like algorithms. Journal of Machine Learning Research, 2012, 13: 1007-1036
|
[52]
|
Bi J B, Wu D J, Lu L, Liu M Z, Tao Y M, Wolf M. AdaBoost on low-rank PSD matrices for metric learning. In: Proceedings of the 24th International Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE, 2011. 2617-2624
|
[53]
|
Rosales R, Fung G. Learning sparse metrics via linear programming. In: Proceedings of the 12th International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006. 367-373
|
[54]
|
Huang R Q, Sun S L. Kernel regression with sparse metric learning. Journal of Intelligent and Fuzzy Systems, 2013, 24(4): 775-787
|
[55]
|
Bah B, Becker S, Cevher V, Gozcu B. Metric learning with rank and sparsity constraints. In: Proceedings of the 2014 International Conference on Acoustics, Speech, and Signal Processing. Florence, Italy: IEEE, 2014, 21-25
|
[56]
|
Bilenko M, Basu S, Mooney R J. Integrating constraints and metric learning in semi-supervised clustering. In: Proceedings of the 21th International Conference on Maching Learning. New York: ACM, 2004. 81-88
|
[57]
|
Zou Peng-Cheng, Wang Jian-Dong, Yang Guo-Qing. Distance metric learning based on side information autogeneration for time series. Journal of Software, 2013, 24(11): 2642-2655(邹朋成, 王建东, 杨国庆. 辅助信息自动生成的时间序列距离度量学习. 软件学报, 2013, 24(11): 2642-2655)
|
[58]
|
Wang J, Woznica A, Kalousisi A. Parametric local metric learning for nearest neighbor classification. In: Proceedings of the 2012 Annual Conference on Neural Information Processing Systems. Nevada, USA: MIT Press, 2012. 1610-1618
|
[59]
|
Liu Song-Hua, Zhang Jun-Ying, Xu Jin, Jia Hong-En. Kernel-kNN: a new kNN algorithm based on informational energy metric. Acta Automatica Sinica, 2010, 36(12): 1681-1688(刘松华, 张军英, 许进, 贾宏恩. Kernel-kNN: 基于信息能度量的核k--最近邻算法. 自动化学报, 2010, 36(12): 1681-1688)
|
[60]
|
Gao Jun, Wang Shi-Tong, Wang Xiao-Ming. Contextual-distance metric based Laplacian maximum margin criterion. Acta Automatica Sinica, 2010, 36(12): 1661-1673(皋军, 王士同, 王晓明. 基于语境距离度量的拉普拉斯最大间距判别准则. 自动化学报, 2010, 36(12): 1661-1673)
|
[61]
|
Chang H, Yeung D Y. Locally smooth metric learning with application to image retrieval. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-7
|
[62]
|
Yang L, Jin R, Mummert L, Sukthankar R, Goode A, Zheng B, Hoi S C H, Satyanarayanan M. A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 30-44
|
[63]
|
Zhao K, Liu W, Liu J Z. Optimal semi-supervised metric learning for image retrieval. In: Proceedings of the 20th Multimedia Conference. New York: ACM, 2012. 893-896
|
[64]
|
Cong Y, Yuan J S, Tang Y D. Object tracking via online metric learning. In: Proceedings of the 19th International Conference on Image Processing. Orlando, USA: IEEE, 2012. 417-420
|
[65]
|
Jiang N, Liu W Y, Wu Y. Order determination and sparsity-regularized metric learning adaptive visual tracking. In: Proceedings of the 2012 International Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE, 2012. 1956-1963
|
[66]
|
Yao Zhi-Jun, Liu Jun-Tao, Lai Zhong-Yuan, Liu Wen-Yu. An improved Jensen-Shannon divergence based spatiogram. Acta Automatica Sinica, 2011, 37(12): 1464-1473(姚志均, 刘俊涛, 赖重远, 刘文予. 一种改进的JSD距离的空间直方图相似 度度量及目标跟踪. 自动化学报, 2011, 37(12): 1464-1473)
|
[67]
|
Tran D, Sorokin A. Human activity recognition with metric learning. In: Proceedings of the 2008 European Conference on Computer Vision. Marseille, France: Springer, 2008. 548-561
|
[68]
|
Kliper-Gross O, Hassner T, Wolf L. One shot similarity metric learning for action recognition. In: Proceedings of the 2011 Similarity-Based Pattern Recognition. Berlin, Heidelberg: Springer, 2011. 31-45
|
[69]
|
Lebanon G. Metric learning for text documents. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 497-508
|
[70]
|
Jiang N, Liu W Y, Wu Y. Adaptive and discriminative metric differential tracking. In: Proceedings of the 2011 International Conference on Computer Vision and Pattern Recognition. CO, USA: IEEE, 2011. 1161-1168
|
[71]
|
Zhang Y N, Zhang H C, Nasrabadi N M, Huang T S. Multi-metric learning for multi-sensor fusion based classification. Information Fusion, 2013, 14(4): 431-440
|
[72]
|
Yan Yan, Zhang Yu-Jin. State-of-the-art on video-based face recognition. Chinese Journal of Computers, 2009, 32(5): 878-886)(严严, 章毓晋. 基于视频的人脸识别研究进展. 计算机学报, 2009, 32}(5): 878-886)
|
[73]
|
Gao Quan-Xue, Gao Fei-Fei, Hao Xiu-Juan, Cheng Jie. Image Euclidean distance-based two-dimensional local diversity preserving projection. Acta Automatica Sinica, 2013, 39(7): 1062-1070(高全学, 高菲菲, 郝秀娟, 程洁. 基于图像欧氏距离的二维局部多样性 保持投影. 自动化学报, 2013, 39(7): 1062-1070)
|
[74]
|
Liu M Z, Vemuri B C. A robust and efficient doubly regularized metric learning approach. In: Proceedings of the 12th European Conference on Computer Vision, Florence, Italy: Springer, 2012. 646-659
|
[75]
|
Ebert S, Fritz M, Schiele B. Active metric learning for object recognition. In: Proceedings of the 2012 Pattern Recognition. Graz, Austria: Springer, 2012. 327-336
|
[76]
|
Tsagkatakis G, Savakis A E. Online distance metric learning for object tracking. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(12): 1810-1821
|
[77]
|
Yu J, Wang M, Tao D C. Semi-supervised multiview distance metric learning for cartoon synthesis. IEEE Transactions on Image Processing, 2012, 21(11): 4636-4648
|
[78]
|
Niu G, Dai B, Yamada M. Information-theoretic semi-supervised metric learning via entropy regularization. In: Proceedings of the 29th International Conference on Machine Learning. Edinburgh, UK: ACM, 2012. 89-96
|
[79]
|
Chechik G, Sharma V, Shalit U, Bengio S. Large scale online learning of image similarity through ranking. The Journal of Machine Learning, 2010, 11: 1109-1135
|
[80]
|
Adrián P S, Francesc J F, Miguel A H. Passive-aggressive online distance metric learning and extensions. Progress in Artificial Intelligence, 2013, 2(1): 85-96
|
[81]
|
Cong Y, Liu J, Yuan J S, Luo J B. Self-supervised online metric learning with low rank constraint for scene categorization. IEEE Transactions on Image Processing, 2013, 22(8): 3179-3191
|
[82]
|
Jain P, Kulis B, Dhillon I S, Grauman K. Online metric learning and fast similarity search. In: Proceedings of the 22nd Annual Conference on Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2009. 761-768
|
[83]
|
Ying Y M, Huang K Z, Compbell C. Sparse metric learning via smooth optimization. In: Proceedings of the 23rd Annual Conference on Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2009. 2214-2222
|
[84]
|
Li Z C, Liu J, Yu J, Tang J H, Lu H Q. Low rank metric learning for social image retrieval. In: Proceedings of the 20th ACM International Conference on Multimedia. Japan: ACM, 2012. 853-856
|
[85]
|
Zha Z J, Mei T, Wang M, Wang Z F, Hua X S. Robust distance metric learning with auxiliary knowledge. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence. San Francisco: AISTATS, 2009. 1327-1332
|
[86]
|
Huang K H, Jin R, Xu Z L, Liu C L. Robust metric learning by smooth optimization. In: Proceedings of the 26th Uncertainty in Artificial Intelligence. California, USA: AUAI Press, 2010. 244-251
|
[87]
|
Lim D, McFee B, Lanckriet G R G. Robust structural metric learning. In: Proceedings of the 2013 International Conference on Machine Learning. Atlanta, USA: ACM, 2013. 615-623
|