2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非仿射纯反馈非线性系统的自抗扰控制

程春华 胡云安 吴进华

程春华, 胡云安, 吴进华. 非仿射纯反馈非线性系统的自抗扰控制. 自动化学报, 2014, 40(7): 1528-1536. doi: 10.3724/SP.J.1004.2014.01528
引用本文: 程春华, 胡云安, 吴进华. 非仿射纯反馈非线性系统的自抗扰控制. 自动化学报, 2014, 40(7): 1528-1536. doi: 10.3724/SP.J.1004.2014.01528
CHENG Chun-Hua, HU Yun-An, WU Jin-Hua. Auto Disturbance Controller of Non-affine Nonlinear Pure Feedback Systems. ACTA AUTOMATICA SINICA, 2014, 40(7): 1528-1536. doi: 10.3724/SP.J.1004.2014.01528
Citation: CHENG Chun-Hua, HU Yun-An, WU Jin-Hua. Auto Disturbance Controller of Non-affine Nonlinear Pure Feedback Systems. ACTA AUTOMATICA SINICA, 2014, 40(7): 1528-1536. doi: 10.3724/SP.J.1004.2014.01528

非仿射纯反馈非线性系统的自抗扰控制

doi: 10.3724/SP.J.1004.2014.01528
详细信息
    作者简介:

    胡云安 海军航空工程学院控制工程系教授. 2004年获哈尔滨工业大学电器工程与自动化学院博士学位. 主要研究方向为飞行器导航和控制系统设计,非线性控制. E-mail:hya507@sina.com

Auto Disturbance Controller of Non-affine Nonlinear Pure Feedback Systems

  • 摘要: 针对一类具有外部扰动的不确定非仿射纯反馈非线性系统,结合反演和自抗扰技术,提出了一种新的控制设计方案,该方案中反演设计的每一步引入了自抗扰设计,同时采用微分器和扩展状态观测器分别估计虚拟控制的导数和系统的未知部分.与现有设计方法不同,它不是直接利用逼近定理来构建理想的控制器.该方案设计过程简单,并且通过输入状态稳定性分析证明了系统状态能渐近收敛到原点的任意小邻域内.仿真结果证实了该方法的有效性.
  • [1] Krener A J, Isidori A. Linearization by output injection and nonlinear observers. System & Control Letters, 1983, 3(1): 47-52
    [2] Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York: John Wiley & Sons, 1995
    [3] Ge S S, Lee T H, Wang J. Adaptive control of nonaffine nonlinear systems using neural networks. In: Proceedings of the 15th IEEE International Symposium on Intelligent Control. Rio Patras, Greece: IEEE, 2000. 13-18
    [4] Zhang T, Ge S S, Hang C C. Direct adaptive control of non-affine nonlinear systems using multi-layer neural networks. In: Proceedings of American Control Conference. Philadelphia, Pennsylvania: AACC, 1998. 515-519
    [5] Ge S S, Zhang J. Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback. IEEE Transactions on Neural Networks, 2003, 14(4): 900-918
    [6] Chen M, Ge S S. Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer. IEEE Transactions on Cybernetics, 2013, 43(4): 1213-1225
    [7] Cui L L, Luo Y H, Zhang H G. Adaptive critic design based robust neural network control for a class of continuous-time nonaffine nonlinear system. In: Proceedings of the 2011 International Conference on Modelling, Identification and Control. Shanghai, China: IEEE, 2011. 261-266
    [8] Labiod S, Guerra T M. Adaptive fuzzy control of a class of SISO nonaffine nonlinear systems. Fuzzy Sets and Systems, 2007, 158(10): 1126-1137
    [9] Labiod S, Guerra T M. Direct adaptive fuzzy control for nonaffine nonlinear systems with unknown control direction. In: Proceedings of the 2011 International Conference on Fuzzy Systems. Taipei, China: IEEE, 2011. 2870-2875
    [10] Wang W Y, Chien Y H, Leu Y G, Lee T T. Adaptive T-S fuzzy-neural modeling and control for general MIMO unknown nonaffine nonlinear systems using projection update laws. Automatica, 2010, 46(5): 852-863
    [11] Wang W Y, Chien Y H, Lee T T. Observer-based T-S fuzzy control for a class of general nonaffine nonlinear systems using generalized projection-update laws. IEEE Transactions on Fuzzy System, 2011, 19(3): 493-504
    [12] Ge S S, Wang C. Adaptive NN control of uncertain nonlinear pure-feedback systems. Automatica, 2002, 38(4): 671-682
    [13] Sun G, Wang D, Li X Q, Peng Z H. A DSC approach to adaptive neural network tracking control for pure-feedback nonlinear systems. Applied Mathematics and Computation, 2013, 219(11): 6224-6235
    [14] Park J H, Kim S H. Direct adaptive output-feedback fuzzy controller for a nonaffine nonlinear system. IEEE Proceedings-Control Theory and Applications, 2004, 151(1): 65-72
    [15] Park J H, Park G T, Kim S H, Moon C J. Direct adaptive self-structuring fuzzy controller for nonaffine nonlinear system. Fuzzy Sets and Systems, 2005, 153(3): 429-445
    [16] Wen J. Adaptive fuzzy controller for a class of strict-feedback nonaffine nonlinear system. In: Proceedings of the 9th IEEE International Conference on Control and Automation. Santiago, Chile: IEEE, 2011. 1255-1260
    [17] Wen J, Jiang C S. Adaptive fuzzy control for a class of chaotic systems with nonaffine inputs. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(1): 475-492
    [18] Han Jing-Qing. Auto-disturbances-rejection controller and its applications. Control and Decision, 1998, 13(1): 19-23(韩京清. 自抗扰控制器及其应用. 控制与决策, 1998, 13(1): 19-23)
    [19] Han Jing-Qing. Auto disturbances rejection control technique. Frontier Science, 2007, 1(1): 24-31(韩京清. 自抗扰控制技术. 前沿科学, 2007, 1(1): 24-31)
    [20] Chen Zeng-Qiang, Sun Ming-Wei, Yang Rui-Guang. On the stability of linear active disturbance rejection control. Acta Automatica Sinica, 2013, 39(5): 574-580(陈增强, 孙明玮, 杨瑞光. 线性自抗扰控制器的稳定性研究. 自动化学报, 2013, 39(5): 574-580)
    [21] Su Jian-Bo, Qiu Wen-Bin. Robotic calibration-free hand-eye coordination based on auto disturbances rejection controller. Acta Automatica Sinica, 2003, 29(2): 161-167
    [22] Qiao Guo-Lin, Tong Chao-Nan, Sun Yi-Kang. Study on mould level and casting speed coordination control based on ADRC with DRNN optimization. Acta Automatica Sinica, 2007, 33(6): 641-648(乔国林, 童朝南, 孙一康. 基于神经网络自抗扰控制的结晶器液位拉速协调系统研究. 自动化学报, 2007, 33(6): 641-648)
    [23] Cheng Chun-Hua, Hu Yun-An, Wu Jin-Hua, Zou Qiang. Auto disturbance rejection controller of non-affine nonlinear systems with adaptive observers. Control Theory & Application, 2014, 31(2):148-158(程春华, 胡云安, 吴进华, 邹强. 非仿射系统的自适应观测器自抗扰控制. 控制理论与应用, 2014, 31(2):148-158)
    [24] Huang Yi, Han Jing-Qing. Analysis and design for the second order nonlinear continuous extended states observer. Chinese Science Bulletin, 2000, 45(13): 1373-1379 (黄一, 韩京清. 非线性连续二阶扩张状态观测器的分析与设计. 科学通报, 2000, 45(13): 1373-1379)
    [25] Han Jing-Qing. Active Disturbance Rejection Control Technique-The Technique for Estimating and Compensating the Uncertainties. Beijing: National Defense Industry Press, 2009. 56-66 (韩京清. 自抗扰控制技术-估计补偿不确定因素的控制技术. 北京: 国防工业出版社, 2009. 56-66)
    [26] Levant A. Robust exact differentiation via sliding mode technique. Automatica, 1998, 34(3): 379-384
  • 加载中
计量
  • 文章访问数:  1957
  • HTML全文浏览量:  54
  • PDF下载量:  814
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-05
  • 修回日期:  2013-10-16
  • 刊出日期:  2014-07-20

目录

    /

    返回文章
    返回