[1]
|
Peal J. Probabilistic Reasoning in Intelligent Systems. Massachusetts: Morgan Kaufmann, 1988
|
[2]
|
Tamda Y, Imoto S, Araki H. Estimating genome-wide gene networks using nonparametric Bayesian network models on massively parallel computers. IEEE Transactions on Computational Biology and Bioinformatics, 2011, 3(8): 683-697
|
[3]
|
Ibrahim W, Beiu V. Using Bayesian networks to accurately calculate the reliability of complementary metal oxide semiconductor gates. IEEE Transactions on Reliability, 2011, 60(3): 538-549
|
[4]
|
Jin Nai-Gao, Yin Fu-Liang, Chen Zhe. Audio-visual speaker tracking based on dynamic Bayesian network. Acta Automatica Sinica, 2008, 34(9): 1083-1089(金乃高, 殷福亮, 陈喆. 基于动态贝叶斯网络的音视频联合说话人跟踪. 自动化学报, 2008, 34(9): 1083-1089)
|
[5]
|
Chen Hai-Yang, Gao Xiao-Guang, Fan Hao. Inference algorithm of variable structure DDBNs and multi-target recognition. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2222-2227(陈海洋, 高晓光, 樊昊. 变结构DDBNS的推理算法与多目标识别. 航空学报, 2010, 31(11): 2222-2227)
|
[6]
|
Du You-Tian, Chen Feng, Xu Wen-Li. Approach to human activity multi-scale analysis and recognition based on multi-layer dynamic Bayesian network. Acta Automatica Sinica, 2009, 31(11): 225-232(杜友田, 陈峰, 徐文立. 基于多层动态贝叶斯网络的人的行为多尺度分析及识别方法. 自动化学报, 2009, 31(11): 225-232)
|
[7]
|
Wan Jiu-Qing, Liu Qing-Yun. Data association in visual sensor networks based on high-order spatial-temporal model. Acta Automatica Sinica, 2012, 38(2): 236-247(万九卿, 刘青云. 基于高阶时空模型的视觉传感网络数据关联方法. 自动化学报, 2012, 38(2): 236-247)
|
[8]
|
Infantes G, Ghallab M, Ingrand F. Learning the behavior model of a robot. Autonomous Robots, 2011, 30(3): 157-177
|
[9]
|
Druzdzel M. Probabilistic Reasoning in Decision Support Systems: from Computation to Common Sense [Ph.D. dissertation], Carnegie Mellon University, USA, 1993
|
[10]
|
Druzdzel M, van der Gaag L C. Building probabilistic networks: where do the numbers come from? IEEE Transactions on Knowledge and Data Engineering, 2000, 12(4): 481-486
|
[11]
|
Helsper E, Gaag L, Groenendal F. Designing a procedure for the acquisition of probability constraints for Bayesian networks. In: Proceedings of the 14th Conference on Engineering Knowledge in the Age of the Semantic Web. Northampton, UK: Springer, 2004. 280-292
|
[12]
|
Wittig F, Jameson A. Exploiting qualitative knowledge in the learning of conditional probabilities of Bayesian networks. In: Proceedings of the 16th International Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000. 644-652
|
[13]
|
Altendorf E, Restificar A, Dietterich T. Learning from sparse data by exploiting monotonicity constraints. In: Proceedings of the 21st International Conference on Uncertainty in Artificial Intelligence. Arlington, Virginia: AUAI Press, 2005. 18-26
|
[14]
|
Feelders A, van der Gaag L C. Learning Bayesian network parameters under order constraints. Journal of Approximate Reasoning, 2006, 42(1-2): 37-53
|
[15]
|
Niculescu R, Mitchell T, Rao R B. Bayesian network learning with parameter constraints. Journal of Machine Learning Research, 2006, 7(1): 1357-1383
|
[16]
|
Campos C, Cozman F. Belief updating and learning in semi-qualitative probabilistic networks. In: Proceedings of the 21st International Conference on Uncertainty in Artificial Intelligence. Edinburgh, Scotland: AUAI Press, 2005. 153-160
|
[17]
|
de Campos C P, Tong Y, Ji Q. Constrained maximum likelihood learning of Bayesian networks for facial action recognition. In: Proceedings of the Tenth European Conference on Computer Vision. Marseille, France: Springer, 2008. 168-181
|
[18]
|
de Campos C P, Ji Q. Improving Bayesian network parameter learning using constraints. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa FL: IEEE, 2008. 1-4
|
[19]
|
Isozaki T, Kato N, Ueno M. Minimum free energies with "data temperature" for parameter learning of Bayesian networks. In: Proceedings of the 20th International Conference on Tools with Artificial Intelligence. Ohio, USA: IEEE, 2008. 371-378
|
[20]
|
Liao Wen-Hua, Qiang Ji. Learning Bayesian network parameters under incomplete data with domain knowledge. Pattern Recognition, 2009, 42(11): 3046-3056
|
[21]
|
Rui Chang, Wei Wang. Novel algorithm for Bayesian network parameter learning with informative prior constraints. In: Proceedings of the 2010 International Joint Conference on Neural Networks. Barcelona, Spain: IEEE, 2010. 1-8
|
[22]
|
Brunk H. Maximum likelihood estimates of monotone parameters. Annuals of Mathematical Statistics, 1955, 26(11): 607-616
|
[23]
|
Murphy K P. Dynamic Bayesian Networks: Representation, Inference and Learning [Ph.D. dissertation], University of California, Berkeley, USA, 1993
|
[24]
|
Bidyuk P I, Terent A N, Gasanov A S. Construction and methods of learning of Bayesian networks. Cybernetics and Systems Analysis, 2005, 41(4): 587-598
|
[25]
|
Nielsen U, Pellet J, Elisseeff A. Explanation trees for causal Bayesian networks. In: Proceedings of the 24th International Conference on Uncertainty in Artificial Intelligence. Helsinki, Finland: AUAI Press, 2008. 427-434
|
[26]
|
Thwaites T. Causal identifiability via chain event graphs. Artificial Intelligence, 2013, 195(2): 291-315
|
[27]
|
Höffgen K. Learning and robust learning of product distributions. In: Proceedings of 6th Annual Conference on Computational Learning Theory. New York, USA: ACM, 1993. 77-83
|
[28]
|
Kullback S, Leibler R. On information and sufficiency. Annals of Mathematical Statistics, 1951, 22(1): 79-86
|