2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二进神经网络的0/1分布系统可靠性分析

杨娟 陆阳 黄镇谨

杨娟, 陆阳, 黄镇谨. 基于二进神经网络的0/1分布系统可靠性分析. 自动化学报, 2014, 40(7): 1472-1480. doi: 10.3724/SP.J.1004.2014.01472
引用本文: 杨娟, 陆阳, 黄镇谨. 基于二进神经网络的0/1分布系统可靠性分析. 自动化学报, 2014, 40(7): 1472-1480. doi: 10.3724/SP.J.1004.2014.01472
YANG Juan, LU Yang, HUANG Zhen-Jin. Reliability of Systems with 0/1 Distribution Based on Binary Neural Networks. ACTA AUTOMATICA SINICA, 2014, 40(7): 1472-1480. doi: 10.3724/SP.J.1004.2014.01472
Citation: YANG Juan, LU Yang, HUANG Zhen-Jin. Reliability of Systems with 0/1 Distribution Based on Binary Neural Networks. ACTA AUTOMATICA SINICA, 2014, 40(7): 1472-1480. doi: 10.3724/SP.J.1004.2014.01472

基于二进神经网络的0/1分布系统可靠性分析

doi: 10.3724/SP.J.1004.2014.01472
基金项目: 

安徽省自然科学基金项目(1408085QF117),合肥工业大学博士专项科研资助基金(2013HGBZ0182),合肥工业大学青年教师创新项目(2013HGQC0019)资助

详细信息
    作者简介:

    杨娟 合肥工业大学计算机与信息学院,讲师. 2012 年获合肥工业大学计算机与信息学院博士学位. 主要研究方向为人工智能,神经网络.E-mail:yangjuan6985@163.com

Reliability of Systems with 0/1 Distribution Based on Binary Neural Networks

Funds: 

Supported by Natural Science Foundation of Anhui Province (1408085QF117), Doctoral Special Research Fund of Hefei University of Technology (2013HGBZ0182), Young Teacher Innovation Project of Hefei University of Technology (2013HGQC0019)

  • 摘要: 系统可靠性的计算依赖于各基本单元的0/1分布关系及其构成的布尔逻辑. 本文利用二进神经网络可以完备实现布尔逻辑的特性,提出一种基于二进神经网络的可靠性分析方法. 该方法针对每个二进神经元的输入都是0/1逻辑关系的线性组合这一特点,提出并且证明了0/1分布的线性组合的概率分布函数;建立系统功能与布尔函数间的等价关系,将系统转化为相应的二进神经网络;利用线性组合的概率分布函数,通过逐层计算该二进神经网络的0/1输出概率,解决了一般系统的可靠性计算问题.
  • [1] Laprie J C. Dependability: Basic Concepts and Terminology. Vienna: Springer-Verlag, 1990
    [2] Mitchell C, Stavridou V. Mathematics of Dependable Systems. Oxford: Clarendon Press, 1995
    [3] Cao Jin-Hua, Cheng Kan. Reliability Mathematical Introduction. Beijing: Higher Education Press, 2006(曹晋华, 程侃. 可靠性数学引论. 北京: 高等教育出版社, 2006)
    [4] Chaudhuri G, Hu K, Afshar N. A new approach to system reliability. IEEE Transactions on Reliability, 2001, 50(1): 75-84
    [5] Lin M S. An O(k2log(n)) algorithm for computing the reliability of consecutive-k-out-of-n: F systems. IEEE Transactions on Reliability, 2004, 53(1): 3-6
    [6] Amari S V, Zuo M J, Dill G. A fast and robust reliability evaluation algorithm for generalized multi-state k-out-of-n system. IEEE Transactions on Reliability, 2009, 58(1): 88-97
    [7] Azaron A, Katagiri H, Sakawa M, Modarres M. Reliability function of a class of time-dependent systems with standby redundancy. European Journal of Operational Research, 2005, 164(2): 378-386
    [8] Yang Juan, Lu Yang, Huang Zhen-Jin, Wang Qiang. Hamming sphere dimple in binary neural networks and its linear separability. Acta Automatica Sinica, 2011, 37(6): 737-745 (杨娟, 陆阳, 黄振谨, 王强. 二进神经网络中的汉明球突及其线性可分性. 自动化学报, 2011, 37(6): 737-745)
    [9] Chen F Y, Chen G R, He G L, Xu X B, He Q B. Universal perceptron and DNA-like learning algorithm for binary neural networks: LSBF and PBF implementations. IEEE Transactions on Neural Network, 2009, 20(10): 1645-1658
    [10] Chen F Y, Chen G R, He Q B. Universal perceptron and DNA-like learning algorithm for binary neural networks: non-LSBF implementation. IEEE Transactions on Neural Network, 2009, 20(8): 1293-1301
    [11] Lu Y, Yang J, Wang Q, Huang Z J. The upper bound of the minimal number of hidden neurons for the parity problem in binary neural networks. Science China Information Sciences, 2012, 55(7): 1579-1587
    [12] Yang Juan, Lu Yang, Fang Huan, Zhu Xiao-Juan. An ant colony-based learning algorithm for binary neural networks. Journal of Circuits and Systems, 2012, 17(6): 49-56 (杨娟, 陆阳, 方欢, 朱晓娟. 基于蚁群算法的二进神经网络学习算法. 电路与系统学报, 2012, 17(6): 49-56)
    [13] Lu Yang, Han Jiang-Hong, Wei Zhen. A general judging and constructing method of SP functions in binary neural networks. Acta Automatica Sinica, 2003, 29(2): 234-241(陆阳,韩江洪,魏臻.二进神经网络中SP函数的一般判别和构造方法.自动化学报, 2003, 29(2): 234-241)
    [14] Lu Yang, Han Jiang-Hong, Zhang Wei-Yong. Logical relation determination criteria and equivalence rule extraction on binary neural networks. Pattern Recognition and Artificial Intelligence, 2001, 14(2): 171-176 (陆阳, 韩江洪, 张维勇. 二进神经网络逻辑关系判据及等价性规则提取. 模式识别与人工智能, 2001, 14(2): 171-176)
    [15] Kim J H, Park S. The geometrical learning of binary neural networks. IEEE Transaction on Neural Networks, 1995, 6(1): 237-247
  • 加载中
计量
  • 文章访问数:  1786
  • HTML全文浏览量:  55
  • PDF下载量:  850
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-12
  • 修回日期:  2013-12-09
  • 刊出日期:  2014-07-20

目录

    /

    返回文章
    返回