2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低空复杂环境下基于采样空间约减的无人机在线航迹规划算法

温乃峰 苏小红 马培军 赵玲玲

温乃峰, 苏小红, 马培军, 赵玲玲. 低空复杂环境下基于采样空间约减的无人机在线航迹规划算法. 自动化学报, 2014, 40(7): 1376-1390. doi: 10.3724/SP.J.1004.2014.01376
引用本文: 温乃峰, 苏小红, 马培军, 赵玲玲. 低空复杂环境下基于采样空间约减的无人机在线航迹规划算法. 自动化学报, 2014, 40(7): 1376-1390. doi: 10.3724/SP.J.1004.2014.01376
WEN Nai-Feng, SU Xiao-Hong, MA Pei-Jun, ZHAO Ling-Ling. Sampling Space Reduction-based UAV Online Path Planning Algorithm in Complex Low Altitude Environments. ACTA AUTOMATICA SINICA, 2014, 40(7): 1376-1390. doi: 10.3724/SP.J.1004.2014.01376
Citation: WEN Nai-Feng, SU Xiao-Hong, MA Pei-Jun, ZHAO Ling-Ling. Sampling Space Reduction-based UAV Online Path Planning Algorithm in Complex Low Altitude Environments. ACTA AUTOMATICA SINICA, 2014, 40(7): 1376-1390. doi: 10.3724/SP.J.1004.2014.01376

低空复杂环境下基于采样空间约减的无人机在线航迹规划算法

doi: 10.3724/SP.J.1004.2014.01376
基金项目: 

国家自然科学基金(61175027)资助

详细信息
    作者简介:

    苏小红 博士,哈尔滨工业大学计算机科学与技术学院教授. 主要研究方向为信息融合,软件工程和神经网络.E-mail:sxh@hit.edu.cn

Sampling Space Reduction-based UAV Online Path Planning Algorithm in Complex Low Altitude Environments

Funds: 

Supported by National Natural Science Foundation of China (61175027)

  • 摘要: 针对低空复杂环境下障碍物密集且类型多样、带有多通道并存在不确定信息的无人机在线航迹规划问题,为了减少碰撞检测次数,提高航迹搜索速度,降低航迹代价,提出一种基于采样空间约减的无人机在线航迹规划算法. 算法通过引入代价模型,提出约减域逐步构造方法,引导规划树快速有效扩展,改善了基于动态域的快速拓展随机树(Dynamic domain rapidly-exploring random tree,DDRRT) 算法中存在的采样空间过度约减问题. 算法通过密度划分索引的方法逐步构建多棵Kd 树(K-dimensional tree)并采用多近邻节点搜索方法,加快了近邻树节点搜索速度. 仿真实验结果表明,与DDRRT方法相比,该方法在保证对采样空间约减合理性的同时,提高了航迹规划效率和通道内的寻路能力.
  • [1] Ye Wen, Fan Hong-Da, Zhu Ai-Hong. Mission Planning for Unmanned Aerial Vehicles. Beijing: National Defense Industry Press, 2011. 1-201(叶文, 范洪达, 朱爱红. 无人飞行器任务规划. 北京: 国防工业出版社, 2011. 1-201)
    [2] Frazzoli E, Dahleh M A, Feron E. Real-time motion planning for agile autonomous vehicles. Journal of Guidance Control and Dynamics, 2002, 25(1): 116-129
    [3] Kim Y, Gu D W, Postlethwaite I. Real-time path planning with limited information for autonomous unmanned air vehicles. Automatica, 2008, 44(3): 696-712
    [4] Zhao Ming, Su Xiao-Hong, Ma Pei-Jun, Zhao Ling-Ling. A unified modeling method of UAVs cooperative target assignment by complex multi-constraints conditions. Acta Automatica Sinica, 2012, 38(12): 2038-2048(赵明, 苏小红, 马培军, 赵玲玲. 复杂多约束UAVs协同目标分配的一种统一建模方法. 自动化学报, 2012, 38(12): 2038-2048)
    [5] Tsourdos A, White B A, Shanmugavel M. Cooperative Path Planning of Unmanned Aerial Vehicles. West Sussex: Wiley & Sons, 2011. 1-185
    [6] LaValle S M. Planning Algorithms. Cambridge: Cambridge University Press, 2006. 482-580
    [7] Yuan Kui, Li Yuan, Fang Li-Xin. Multiple mobile robot systems: a survey of recent work. Acta Automatica Sinica, 2007, 33(8): 785-794(原魁, 李园, 房立新. 多移动机器人系统研究发展近况. 自动化学报, 2007, 33(8): 785-794)
    [8] Zhu Yi, Zhang Tao, Song Jing-Yan. Study on the local minima problem of path planning using potential field method in unknown environments. Acta Automatica Sinica, 2010, 36(8): 1122-1130(朱毅, 张涛, 宋靖雁. 未知环境下势场法路径规划的局部极小问题研究. 自动化学报, 2010, 36(8): 1122-1130)
    [9] Zhang Chun-Gang, Xi Yu-Geng. A real-time path planning method for mobile robot avoiding oscillation and dead circulation. Acta Automatica Sinica, 2003, 29(2): 197-205(张纯刚, 席裕庚. 一种克服振荡与死循环的机器人实时路径规划方法. 自动化学报, 2003, 29(2): 197-205)
    [10] LaValle S M, Kuffner J J. Randomized kinodynamic planning. In: Proceedings of the IEEE International Conference on Robotics and Automation. Detroit, USA: IEEE, 1999, 1: 473-479
    [11] Cheng Peng, Shen Zuo-Jun, LaValle S M. RRT-based trajectory design for autonomous automobiles and spacecraft. Archives of Control Sciences, 2001, 11(3): 167-194
    [12] Toda Y, Kubota N. Path planning using multi-resolution map for a mobile robot. In: Proceedings of the Society of Instrument and Control Engineers Annual Conference. Tokyo, Japan: IEEE, 2011. 1276-1281
    [13] Poppinga J, Birk A, Pathak, K, Vaskevicius N. Fast 6-DOF path planning for Autonomous Underwater Vehicles (AUV) based on 3D plane mapping. In: Proceedings of IEEE International Symposium on Safety, Security, and Rescue Robotics. Kyoto, Japan: IEEE, 2011. 345-350
    [14] Hsu D, Kindel R, Latombe J C, Rock S. Randomized kinodynamic motion planning with moving obstacles. The International Journal of Robotics Research, 2002, 21(3): 233-255
    [15] Zucker M, Kuffner J, Bagnell J A. Adaptive workspace biasing for sampling-based planners. In: Proceedings of the IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2008. 3757-3762
    [16] Rodriguez S, Tang X Y, Lien J M, Amato N M. An obstacle-based rapidly-exploring random tree. In: Proceedings of the IEEE International Conference on Robotics and Automation. Orlando, USA: IEEE, 2006. 895-900
    [17] Yershova A, Jaillet L, Siméon T, LaValle S M. Dynamic-domain RRTs: efficient exploration by controlling the sampling domain. In: Proceedings of the IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005. 3856-3861
    [18] Jaillet L, Yershova A, LaValle S M, Siméon T. Adaptive tuning of the sampling domain for dynamic-domain RRTs. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada: IEEE, 2005. 2851-2856
    [19] Montemanni R, Gambardella L M, Donati A V. A branch and bound algorithm for the robust shortest path problem with interval data. Operations Research Letters, 2004, 32(3): 225-232
    [20] Karaman S, Frazzoli E. Optimal kinodynamic motion planning using incremental sampling-based methods. In: Proceedings of the IEEE Conference on Decision and Control. Georgia, USA: IEEE Control Systems Society, 2010. 7681-7687
    [21] Urmson C, Simmons R. Approaches for heuristically biasing RRT growth. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE, 2003, 2: 1178-1183
    [22] Lee J, Pippin C, Balch T. Cost based planning with RRT in outdoor environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France: IEEE, 2008. 684-689
    [23] Jaillet L, Cortés J, Siméon T. Transition-based path planning on configuration-space costmaps. IEEE Transactions on Robotics, 2010, 26(4): 635-646
    [24] Ferguson D, Stentz A. Anytime RRTs. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006. 5369-5375
    [25] Yang K J, Sukkarieh S. 3D smooth path planning for a UAV in cluttered natural environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robot and Systems. Nice, France: IEEE, 2008. 794-800
    [26] Karaman S, Walter M R, Perez A, Frazzoli E, Teller S. Anytime motion planning using the RRT. In: Proceedings of the IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 1478-1483
    [27] Lindemann S R, LaValle S M. Incrementally reducing dispersion by increasing Voronoi bias in RRTs. In: Proceedings of the IEEE International Conference on Robotics and Automation. New Orleans, USA: IEEE, 2004, 4: 3251-3257
    [28] Lindemann S R, LaValle S M. Steps toward derandomizing RRTs. In: Proceedings of the Fourth International Workshop on Robot Motion and Control. Poznan, Poland: IEEE, 2004. 271-277
    [29] Bruce J, Veloso M. Real-time randomized path planning for robot navigation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerland: IEEE, 2002, 3: 2383-2388
    [30] Shi B F, Cheng P, Cheng N. 3D flight path planning based on RRTs for RNP requirements. In: International Conference on Information and Automation. Shenyang, China: IEEE, 2012. 51-56
    [31] Yang G, Kapila V. Optimal path planning for unmanned air vehicles with kinematic and tactical constraints. In: Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, USA: IEEE, 2002, 2: 1301-1306
    [32] Guo Suo-Feng, Shen Gong-Zhang, Wu Cheng-Fu. Advanced Flight Control System. Beijing: National Defense Industry Press, 2003. 180-185(郭锁凤, 申功璋, 吴成富. 先进飞行控制系统. 北京: 国防工业出版社, 2003. 180-185)
    [33] Shanmugavel M, Tsourdos A, Zbikowski R, White B A. 3D dubins sets based on coordinated path planning for swarm of UAVs. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Colorado, USA: AIAA, 2006. 21-24
    [34] Ardiyanto I, Miura J. Real-time navigation using randomized kinodynamic planning with arrival time field. Robotics and Autonomous Systems, 2012, 60(12): 1579-1591
    [35] Aoude G S, How J P, Garcia I M. Two-stage path planning approach for solving multiple spacecraft reconfiguration maneuvers. The Journal of the Astronautical Sciences, 2008, 56(4): 515-544
    [36] Scheuer A, Fraichard T. Continuous-curvature path planning for car-like vehicles. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Grenoble, France: IEEE. 1997. 2: 997-1003
    [37] Garcia I, How J P. Trajectory optimization for satellite reconfiguration maneuvers with position and attitude constraints. In: Proceedings of the 2005 American Control Conference. Michigan, USA: American Automatic Control Council. 2005. 2: 889-894
    [38] Yershova A, LaValle S M. Improving motion-planning algorithms by efficient nearest-neighbor searching. IEEE Transactions on Robotics, 2007, 23(1): 151-157
    [39] Atramentov A, LaValle S M. Efficient nearest neighbor searching for motion planning. In: Proceedings of the IEEE International Conference on Robotics and Automation. Washington D C. USA: IEEE, 2002. 1: 632-637
  • 加载中
计量
  • 文章访问数:  1854
  • HTML全文浏览量:  102
  • PDF下载量:  986
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-31
  • 修回日期:  2014-01-03
  • 刊出日期:  2014-07-20

目录

    /

    返回文章
    返回