[1]
|
Ye Wen, Fan Hong-Da, Zhu Ai-Hong. Mission Planning for Unmanned Aerial Vehicles. Beijing: National Defense Industry Press, 2011. 1-201(叶文, 范洪达, 朱爱红. 无人飞行器任务规划. 北京: 国防工业出版社, 2011. 1-201)
|
[2]
|
Frazzoli E, Dahleh M A, Feron E. Real-time motion planning for agile autonomous vehicles. Journal of Guidance Control and Dynamics, 2002, 25(1): 116-129
|
[3]
|
Kim Y, Gu D W, Postlethwaite I. Real-time path planning with limited information for autonomous unmanned air vehicles. Automatica, 2008, 44(3): 696-712
|
[4]
|
Zhao Ming, Su Xiao-Hong, Ma Pei-Jun, Zhao Ling-Ling. A unified modeling method of UAVs cooperative target assignment by complex multi-constraints conditions. Acta Automatica Sinica, 2012, 38(12): 2038-2048(赵明, 苏小红, 马培军, 赵玲玲. 复杂多约束UAVs协同目标分配的一种统一建模方法. 自动化学报, 2012, 38(12): 2038-2048)
|
[5]
|
Tsourdos A, White B A, Shanmugavel M. Cooperative Path Planning of Unmanned Aerial Vehicles. West Sussex: Wiley & Sons, 2011. 1-185
|
[6]
|
LaValle S M. Planning Algorithms. Cambridge: Cambridge University Press, 2006. 482-580
|
[7]
|
Yuan Kui, Li Yuan, Fang Li-Xin. Multiple mobile robot systems: a survey of recent work. Acta Automatica Sinica, 2007, 33(8): 785-794(原魁, 李园, 房立新. 多移动机器人系统研究发展近况. 自动化学报, 2007, 33(8): 785-794)
|
[8]
|
Zhu Yi, Zhang Tao, Song Jing-Yan. Study on the local minima problem of path planning using potential field method in unknown environments. Acta Automatica Sinica, 2010, 36(8): 1122-1130(朱毅, 张涛, 宋靖雁. 未知环境下势场法路径规划的局部极小问题研究. 自动化学报, 2010, 36(8): 1122-1130)
|
[9]
|
Zhang Chun-Gang, Xi Yu-Geng. A real-time path planning method for mobile robot avoiding oscillation and dead circulation. Acta Automatica Sinica, 2003, 29(2): 197-205(张纯刚, 席裕庚. 一种克服振荡与死循环的机器人实时路径规划方法. 自动化学报, 2003, 29(2): 197-205)
|
[10]
|
LaValle S M, Kuffner J J. Randomized kinodynamic planning. In: Proceedings of the IEEE International Conference on Robotics and Automation. Detroit, USA: IEEE, 1999, 1: 473-479
|
[11]
|
Cheng Peng, Shen Zuo-Jun, LaValle S M. RRT-based trajectory design for autonomous automobiles and spacecraft. Archives of Control Sciences, 2001, 11(3): 167-194
|
[12]
|
Toda Y, Kubota N. Path planning using multi-resolution map for a mobile robot. In: Proceedings of the Society of Instrument and Control Engineers Annual Conference. Tokyo, Japan: IEEE, 2011. 1276-1281
|
[13]
|
Poppinga J, Birk A, Pathak, K, Vaskevicius N. Fast 6-DOF path planning for Autonomous Underwater Vehicles (AUV) based on 3D plane mapping. In: Proceedings of IEEE International Symposium on Safety, Security, and Rescue Robotics. Kyoto, Japan: IEEE, 2011. 345-350
|
[14]
|
Hsu D, Kindel R, Latombe J C, Rock S. Randomized kinodynamic motion planning with moving obstacles. The International Journal of Robotics Research, 2002, 21(3): 233-255
|
[15]
|
Zucker M, Kuffner J, Bagnell J A. Adaptive workspace biasing for sampling-based planners. In: Proceedings of the IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2008. 3757-3762
|
[16]
|
Rodriguez S, Tang X Y, Lien J M, Amato N M. An obstacle-based rapidly-exploring random tree. In: Proceedings of the IEEE International Conference on Robotics and Automation. Orlando, USA: IEEE, 2006. 895-900
|
[17]
|
Yershova A, Jaillet L, Siméon T, LaValle S M. Dynamic-domain RRTs: efficient exploration by controlling the sampling domain. In: Proceedings of the IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005. 3856-3861
|
[18]
|
Jaillet L, Yershova A, LaValle S M, Siméon T. Adaptive tuning of the sampling domain for dynamic-domain RRTs. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada: IEEE, 2005. 2851-2856
|
[19]
|
Montemanni R, Gambardella L M, Donati A V. A branch and bound algorithm for the robust shortest path problem with interval data. Operations Research Letters, 2004, 32(3): 225-232
|
[20]
|
Karaman S, Frazzoli E. Optimal kinodynamic motion planning using incremental sampling-based methods. In: Proceedings of the IEEE Conference on Decision and Control. Georgia, USA: IEEE Control Systems Society, 2010. 7681-7687
|
[21]
|
Urmson C, Simmons R. Approaches for heuristically biasing RRT growth. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE, 2003, 2: 1178-1183
|
[22]
|
Lee J, Pippin C, Balch T. Cost based planning with RRT in outdoor environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France: IEEE, 2008. 684-689
|
[23]
|
Jaillet L, Cortés J, Siméon T. Transition-based path planning on configuration-space costmaps. IEEE Transactions on Robotics, 2010, 26(4): 635-646
|
[24]
|
Ferguson D, Stentz A. Anytime RRTs. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006. 5369-5375
|
[25]
|
Yang K J, Sukkarieh S. 3D smooth path planning for a UAV in cluttered natural environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robot and Systems. Nice, France: IEEE, 2008. 794-800
|
[26]
|
Karaman S, Walter M R, Perez A, Frazzoli E, Teller S. Anytime motion planning using the RRT. In: Proceedings of the IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 1478-1483
|
[27]
|
Lindemann S R, LaValle S M. Incrementally reducing dispersion by increasing Voronoi bias in RRTs. In: Proceedings of the IEEE International Conference on Robotics and Automation. New Orleans, USA: IEEE, 2004, 4: 3251-3257
|
[28]
|
Lindemann S R, LaValle S M. Steps toward derandomizing RRTs. In: Proceedings of the Fourth International Workshop on Robot Motion and Control. Poznan, Poland: IEEE, 2004. 271-277
|
[29]
|
Bruce J, Veloso M. Real-time randomized path planning for robot navigation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerland: IEEE, 2002, 3: 2383-2388
|
[30]
|
Shi B F, Cheng P, Cheng N. 3D flight path planning based on RRTs for RNP requirements. In: International Conference on Information and Automation. Shenyang, China: IEEE, 2012. 51-56
|
[31]
|
Yang G, Kapila V. Optimal path planning for unmanned air vehicles with kinematic and tactical constraints. In: Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, USA: IEEE, 2002, 2: 1301-1306
|
[32]
|
Guo Suo-Feng, Shen Gong-Zhang, Wu Cheng-Fu. Advanced Flight Control System. Beijing: National Defense Industry Press, 2003. 180-185(郭锁凤, 申功璋, 吴成富. 先进飞行控制系统. 北京: 国防工业出版社, 2003. 180-185)
|
[33]
|
Shanmugavel M, Tsourdos A, Zbikowski R, White B A. 3D dubins sets based on coordinated path planning for swarm of UAVs. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Colorado, USA: AIAA, 2006. 21-24
|
[34]
|
Ardiyanto I, Miura J. Real-time navigation using randomized kinodynamic planning with arrival time field. Robotics and Autonomous Systems, 2012, 60(12): 1579-1591
|
[35]
|
Aoude G S, How J P, Garcia I M. Two-stage path planning approach for solving multiple spacecraft reconfiguration maneuvers. The Journal of the Astronautical Sciences, 2008, 56(4): 515-544
|
[36]
|
Scheuer A, Fraichard T. Continuous-curvature path planning for car-like vehicles. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Grenoble, France: IEEE. 1997. 2: 997-1003
|
[37]
|
Garcia I, How J P. Trajectory optimization for satellite reconfiguration maneuvers with position and attitude constraints. In: Proceedings of the 2005 American Control Conference. Michigan, USA: American Automatic Control Council. 2005. 2: 889-894
|
[38]
|
Yershova A, LaValle S M. Improving motion-planning algorithms by efficient nearest-neighbor searching. IEEE Transactions on Robotics, 2007, 23(1): 151-157
|
[39]
|
Atramentov A, LaValle S M. Efficient nearest neighbor searching for motion planning. In: Proceedings of the IEEE International Conference on Robotics and Automation. Washington D C. USA: IEEE, 2002. 1: 632-637
|