[1]
|
Lopes C G, Sayed A H. Incremental adaptive strategies over distributed networks. IEEE Transactions on Signal Processing, 2007, 55(8): 4064-4077
|
[2]
|
Sayed A H, Lopes C G. Adaptive processing over distributed networks. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2007, 90(8): 1504-1510
|
[3]
|
Wang Le-Yi, Zhao Wen-Xiao. System identification: new paradigms, challenges, and opportunities. Acta Automatica Sinica, 2013, 39(7): 933-942(王乐一, 赵文虓. 系统辨识: 新的模式、挑战及机遇. 自动化学报, 2013, 39(7): 933-942)
|
[4]
|
Cattivelli F S, Sayed A H. Diffusion LMS strategies for distributed estimation. IEEE Transactions on Signal Processing, 2010, 58(3): 1035-1048
|
[5]
|
Lopes C G, Sayed A H. Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Transactions on Signal Processing, 2008, 56(7): 3122-3136
|
[6]
|
Takahashi N, Yamada I, Sayed A H. Diffusion least-mean squares with adaptive combiners: formulation and performance analysis. IEEE Transactions on Signal Processing, 2010, 58(9): 4795-4810
|
[7]
|
Cattivelli F S, Lopes C G, Sayed A H. Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Transactions on Signal Processing, 2008, 56(5): 1865-1877
|
[8]
|
Cattivelli F S, Sayed A H. Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Transactions on Automatic Control, 2010, 55(9): 2069-2084
|
[9]
|
Wan Yi-Ming, Dong Wei, Ye Hao. Distributed H∞ filtering with consensus strategies in sensor networks: considering consensus tracking error. Acta Automatica Sinica, 2012, 38(7): 1211-1217(万一鸣, 董炜, 叶昊. 传感器网络中带有一致性策略的分布式H∞滤波: 考虑一致性跟踪误差. 自动化学报, 2012, 38(7): 1211-1217)
|
[10]
|
Yang Xiao-Jun, Xing Ke-Yi. Channel fault tolerant target tracking in multi-hop wireless sensor networks based on particle filtering. Acta Automatica Sinica, 2011, 37(4): 440-448(杨小军, 邢科义. 无线多跳传感器网络下基于粒子滤波的信道容错的目标跟踪方法. 自动化学报, 2011, 37(4): 440-448)
|
[11]
|
Chen J S, Sayed A H. Diffusion adaptation strategies for distributed optimization and learning over networks. IEEE Transactions on Signal Processing, 2012, 60(8): 4289-4305
|
[12]
|
Tu S Y, Sayed A H. Diffusion strategies outperform consensus strategies for distributed estimation over adaptive networks. IEEE Transactions on Signal Processing, 2012, 60(12): 6217-6234
|
[13]
|
Zhao X, Tu S Y, Sayed A H. Diffusion adaptation over networks under imperfect information exchange and non-stationary data. IEEE Transactions on Signal Processing, 2012, 60(7): 3460-3475
|
[14]
|
Khalili A, Tinati M A, Rastegarnia A, Chambers J A. Steady-state analysis of diffusion LMS adaptive networks with noisy links. IEEE Transactions on Signal Processing, 2012, 60(2): 974-979
|
[15]
|
Zhao X C, Sayed A H. Performance limits for distributed estimation over LMS adaptive networks. IEEE Transactions on Signal Processing, 2012, 60(10): 5107-5124
|
[16]
|
Lee J W, Kim S E, Song W J, Sayed A H. Spatio-temporal diffusion strategies for estimation and detection over networks. IEEE Transactions on Signal Processing, 2012, 60(8): 4017-4034
|
[17]
|
Chouvardas S, Slavakis K, Theodoridis S. Adaptive robust distributed learning in diffusion sensor networks. IEEE Transactions on Signal Processing, 2011, 59(10): 4692-4707
|
[18]
|
Gong Y, Cowan C F N. An LMS style variable tap-length algorithm for structure adaptation. IEEE Transactions on Signal Processing, 2005, 53(7): 2400-2407
|
[19]
|
Zhang Y G, Li N, Chambers J A, Sayed A H. Steady-state performance analysis of a variable tap-length LMS algorithm. IEEE Transactions on Signal Processing, 2008, 56(2): 839-845
|
[20]
|
Zhang Y G, Chambers J A. Convex combination of adaptive filters for a variable tap-length LMS algorithm. IEEE Signal Processing Letters, 2006, 13(10): 628-631
|
[21]
|
Zhang Y G, Chambers J A, Sanei S, Kendrick P, Cox T J. A new variable tap-length LMS algorithm to model an exponential decay impulse response. IEEE Signal Processing Letters, 2007, 14(4): 263-266
|
[22]
|
Li N, Zhang Y G, Zhao Y X, Hao Y L. An improved variable tap-length LMS algorithm. Signal Processing, 2009, 89(5): 908-912
|
[23]
|
Haykin S. Adaptive Filter Theory. New Jersey: Prentice-Hall, 1996
|