2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生机器鱼S形起动的控制与实现

吴正兴 喻俊志 苏宗帅 谭民

吴正兴, 喻俊志, 苏宗帅, 谭民. 仿生机器鱼S形起动的控制与实现. 自动化学报, 2013, 39(11): 1914-1922. doi: 10.3724/SP.J.1004.2013.01914
引用本文: 吴正兴, 喻俊志, 苏宗帅, 谭民. 仿生机器鱼S形起动的控制与实现. 自动化学报, 2013, 39(11): 1914-1922. doi: 10.3724/SP.J.1004.2013.01914
WU Zheng-Xing, YU Jun-Zhi, SU Zong-Shuai, TAN Min. Control and Implementation of S-start for a Multijoint Biomimetic Robotic Fish. ACTA AUTOMATICA SINICA, 2013, 39(11): 1914-1922. doi: 10.3724/SP.J.1004.2013.01914
Citation: WU Zheng-Xing, YU Jun-Zhi, SU Zong-Shuai, TAN Min. Control and Implementation of S-start for a Multijoint Biomimetic Robotic Fish. ACTA AUTOMATICA SINICA, 2013, 39(11): 1914-1922. doi: 10.3724/SP.J.1004.2013.01914

仿生机器鱼S形起动的控制与实现

doi: 10.3724/SP.J.1004.2013.01914
基金项目: 

国家自然科学基金(61075102,61273326,61333016),北京市自然科学基金(4122084)资助

详细信息
    作者简介:

    吴正兴 中国科学院自动化研究所复杂系统管理与控制国家重点实验室博士研究生. 主要研究方向为仿生机器人.E-mail: zhengxing.wu@ia.ac.cn

Control and Implementation of S-start for a Multijoint Biomimetic Robotic Fish

Funds: 

Supported by National Natural Science Foundation of China (61075102, 61273326, 61333016) and Beijing Natural Science Foundation (4122084)

  • 摘要: 给出一种仿生机器鱼S形起动的控制方法.结合北美狗鱼S形起动的形态特征及水动力学知识, 建立了多关节链式结构仿生机器鱼的S形起动模型.整个过程设计为两个阶段: 1)弯曲阶段:以转向速度最大化为目标.在鱼体S形变保证重心稳定平移的前提下, 增大较长转向力臂处的转向力矩,提高转向速度,使鱼体迅速转向目标方向. 2)伸展阶段:以增大前推力为目标.始终保持部分将要伸展的鱼体垂直前进方向,以L形滑动方式打开鱼体. 同时,为保证转向精度,采用模糊控制调节已展开鱼体关节的小角度转动,实时纠正鱼体展开所引起的游动方向偏离. 在S形起动末期,采用变幅值——频率的中枢模式发生器(Central pattern generator, CPG)实现向稳态游动方式的过渡:前期为保证游动方向及获取较大推进力,采用小幅值——高频率的CPG信号, 后期则进入大幅值——低频率的稳态游动.最终,采用四关节仿生机器鱼验证了该方法的有效性, 实现了峰值转速为318.08±9.20°/s、转向误差为1.03±0.48°的较好结果, 对提升水下游动机器人的机动性能具有指导意义.
  • [1] Yu J, Ding R, Yang Q, Tan M, Wang W, Zhang J. On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Transactions on Mechatronics, 2012, 17(5): 847-856
    [2] Liang J H, Wang T M, Wen L. Development of a two-joint robotic fish for real-world exploration. Journal of Field Robotics, 2011, 28(1): 70-79
    [3] Park Y J, Jeong U, Lee J, Kwon S P, Kim H Y, Cho K J. Kinematic condition for maximizing the thrust of a robotic fish using a compliant caudal fin. IEEE Transactions on Robotics, 2012, 28(6): 1216-1227
    [4] Domenici P, Blake R W. The kinematics and performance of fish fast-start swimming. Journal of Experimental Biology, 1997, 200: 1165-1178
    [5] Westneat M W, Hale M E, Mchenry M J, Long J H. Mechanics of the fast-start: muscle function and the role of intramuscular pressure in the escape behavior of Amia calva and Polypterus palmas. Journal of Experimental Biology, 1998, 201(Pt 22): 3041-3055
    [6] Hale M E. S-and C-start escape responses of the muskellunge (Esox masquinongy) require alternative neuromotor mechanisms. Journal of Experimental Biology, 2002, 205(Pt 14): 2005-2016
    [7] Weiss S A, Zottoli S J, Do S C, Faber D S, Preuss T. Correlation of C-start behaviors with neural activity recorded from the hindbrain in free-swimming goldfish (Carassius auratus). Journal of Experimental Biology, 2006, 209(23): 4788-4801
    [8] Canfield J G. Some voluntary C-bends may be Mauthner neuron initiated. Journal of Comparative Physiology A, 2007, 193(10): 1055-1064
    [9] Jayne B C, Lauder G V. New data on axial locomotion in fishes: how speed affects diversity of kinematics and motor patterns. American Zoologist, 1996, 36(6): 642-655
    [10] Liu Y C, Bailey I, Hale M E. Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio). Journal of Comparative Physiology A, 2012, 198(1): 11-24
    [11] David G H, Blake R W. Prey capture and the fast-start performance of northern pike Esox lucius. Journal of Experimental Biology, 1991, 155: 175-192
    [12] Liu J D, Hu H S. Mimicry of sharp turning behaviours in a robotic fish. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005. 3318-3323
    [13] Liu J D, Hu H S. Biological inspiration: from carangiform fish to multi-joint robotic fish. Journal of Bionic Engineering, 2010, 7(1): 35-48
    [14] Yu J Z, Liu L Z, Wang L, Tan M, Xu D. Turning control of a multilink biomimetic robotic fish. IEEE Transactions on Robotics, 2008, 24(1): 201-206
    [15] Conte J, Modarres-Sadeghi Y, Watts M N, Hover F S, Triantafyllou M S. A fast-starting mechanical fish that accelerates at 40ms-2. Bioinspiration and Biomimetics, 2010, 5(3): 035004-1-035004-9
    [16] Chen Hong. Kinematic Mechanism Research on the Swimming and Maneuvering of Robot Fish. [Ph.D. dissertation], University of Science and Technology of China, China, 2006(陈宏. 仿生机器鱼巡游和机动的运动机理研究 [博士学位论文], 中国科学技术大学, 中国, 2006)
    [17] Schriefer J E, Hale M E. Strikes and startles of northern pike (Esox lucius): a comparison of muscle activity and kinematics between S-start behaviors. Journal of Experimental Biology, 2004, 207(3): 535-544
    [18] Marder E, Bucher D. Central pattern generators and the control of rhythmic movements. Current Biology, 2001, 11(23): R986-R996
    [19] Ijspeert A J. Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 2008, 21(4): 642-653
    [20] Ajallooeian M, Ahmadabadi M N, Araabi B N, Moradi H. Design, implementation and analysis of an alternation-based central pattern generator for multidimensional trajectory generation. Robotics and Autonomous Systems, 2012, 60(2): 182-198
    [21] Aoi S, Egi Y, Sugimoto R, Yamashita T, Fujiki S, Tsuchiya K. Functional roles of phase resetting in the gait transition of a biped robot from quadrupedal to bipedal locomotion. IEEE Transactions on Robotics, 2012, 28(6): 1244-1259
    [22] Yu J Z, Wang M, Su Z S, Tan M, Zhang J W. Dynamic modeling of a CPG-governed multijoint robotic fish. Advanced Robotics, 2013, 27(4): 275-285
    [23] Wang G, Zhang D B, Lin L X, Xie H B, Hu T J, Shen L C. CPGs control method using a new oscillator in robotic fish. Science China Technological Sciences, 2010, 53(11): 2914-2919
  • 加载中
计量
  • 文章访问数:  1580
  • HTML全文浏览量:  61
  • PDF下载量:  1507
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-20
  • 修回日期:  2013-06-26
  • 刊出日期:  2013-11-20

目录

    /

    返回文章
    返回