2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有多图拓扑结构的同类智能体LQR控制

张冬梅 欧琳琳 孟莉 王辛刚

张冬梅, 欧琳琳, 孟莉, 王辛刚. 具有多图拓扑结构的同类智能体LQR控制. 自动化学报, 2013, 39(6): 913-919. doi: 10.3724/SP.J.1004.2013.00913
引用本文: 张冬梅, 欧琳琳, 孟莉, 王辛刚. 具有多图拓扑结构的同类智能体LQR控制. 自动化学报, 2013, 39(6): 913-919. doi: 10.3724/SP.J.1004.2013.00913
ZHANG Dong-Mei, OU Lin-Lin, MENG Li, WANG Xin-Gang. LQR Control for Homogeneous Agents with Multi-graph Topology. ACTA AUTOMATICA SINICA, 2013, 39(6): 913-919. doi: 10.3724/SP.J.1004.2013.00913
Citation: ZHANG Dong-Mei, OU Lin-Lin, MENG Li, WANG Xin-Gang. LQR Control for Homogeneous Agents with Multi-graph Topology. ACTA AUTOMATICA SINICA, 2013, 39(6): 913-919. doi: 10.3724/SP.J.1004.2013.00913

具有多图拓扑结构的同类智能体LQR控制

doi: 10.3724/SP.J.1004.2013.00913
基金项目: 

Supported by National Natural Science Foundation of China(61074039, 61273116, 1101367)

详细信息
    通讯作者:

    欧琳琳

LQR Control for Homogeneous Agents with Multi-graph Topology

Funds: 

Supported by National Natural Science Foundation of China(61074039, 61273116, 1101367)

  • 摘要: 本文考虑具有一般线性时不变动态特性的多智能体系统优化控制问题. 将智能体之间的通讯拓扑结构建模成具有自环的无向多图, 每个子系统就是一个节点, 每个节点的控制行为只与本身及邻居节点有关. 由于反馈矩阵具有块对角结构约束, 本文研究的LQR控制问题本质上是一类结构优化问题. 最小化系统LQR性能指标等价于最小化单个智能体性能指标和. 基于线性矩阵不等式得到系统的次优性能指标, 指出LQR性能域是凸集. 由此多智能体系统的LQR控制转化为若干个子系统的LQR控制, 可以通过求解系数是Laplacian矩阵最小最大特征值的两个矩阵不等式得到反馈增益. 数值例子验证了方法的有效性.
  • [1] Beard R W, Lawton J, Hadaegh F Y. A coordination architecture for spacecraft formation control. IEEE Transactions on Control Systems Technology, 2001, 9(6): 777-790
    [2] Bender J G. An overview of systems studies of automated highway systems. IEEE Transactions on Vehicular Technology, 1991, 40(1): 82-99
    [3] Tomlin C, Pappas G J, Sastry G J. Conflict resolution for air traffic management: a study in multiagent hybrid systems. IEEE Transactions on Automatic Control, 1998, 43(4): 509-521
    [4] Stankovic J A, Abdelzaher T E, Lu C Y, Lui S, Hou J C. Real-time communication and coordination in embedded sensor networks. Proceedings of the IEEE, 2003, 91(7): 1002-1022
    [5] Fax J A. Optimal and Cooperative Control of Vehicle Formations [Ph.D. dissertation], California Institute of Technology, USA, 2001
    [6] Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2004, 49(9): 1465-1476
    [7] Vicsek T, Czirok A, Jacob E B, Cohen I, Shochet O. Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 1995, 75(6): 1226-1229
    [8] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6): 988-1001
    [9] Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50(5): 655-661
    [10] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233
    [11] Ren W, Beard R W, Atkins E M. Information consensus in multivehicle cooperative control. IEEE Control Systems Magazine, 2007, 27(2): 71-82
    [12] Min Hai-Bo, Liu Yuan, Wang Shi-Cheng, Sun Fu-Chun. An overview on coordination control problem of Multi-agent system. Acta Automatica Sinica, 2012, 38(10): 1557-1570 (in Chinese)
    [13] Yu Hong-Wang, Zheng Yu-Fan. Dynamic behavior of multi-agent systems with distributed sampled control. Acta Automatica Sinica, 2012, 38(3): 357-365 (in Chinese)
    [14] Yan Wei-Sheng, Li Jun-Bing, Wang Yin-Tao. Consensus for damaged multi-agent system. Acta Automatica Sinica, 2012, 38(11): 1880-1884 (in Chinese)
    [15] Qin J H, Zheng W X, Gao H J. Consensus of multiple second-order vehicles with a time-varying reference signal under directed topology. Automatica, 2011, 47(9): 1983-1991
    [16] Das A, Lewis F L. Cooperative adaptive control for synchronization of second-order systems with unknown nonlinearities. International Journal of Robust and Nonlinear Control, 2011, 21(13): 1509-1524
    [17] Liu Xue-Liang, Xu Bu-Gong. Distributed H∞ consensus control for multiple-agent systems with communication delays. Control and Decision, 2012, 27(4): 494-500 (in Chinese)
    [18] Liu C, Duan Z S, Chen G R, Huang L. L2 norm performance index of synchronization and LQR control synthesis of complex networks. Automatica, 2009, 45(8): 1879-1885
    [19] Borrelli F, Keviczky T. Distributed LQR design for identical dynamically decoupled systems. IEEE Transactions on Automatic Control, 2008, 53(8): 1901-1912
    [20] Cao Y C, Ren W. LQR-based optimal linear consensus algorithms. In: Proceedings of the 2009 American Control Conference. St. Louis, USA: IEEE, 2009. 5204-5209
    [21] Cao Y C, Ren W. Optimal linear-consensus algorithms: an LQR perspective. IEEE Transactions on Systems, Man, and Cybernetics——Part B: Cybernetics, 2010, 40(3): 819-830
    [22] Li Z K, Duan Z S, Chen G R. On H∞ and H2 performance regions of multi-agent systems. Automatica, 2011, 47(4): 797-803
    [23] Boyd S P, El Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia: Society for Industrial and Applied Mathematics, 1994
    [24] Diestel R. Graph Theory. New York: Springer-Verlag, 1997
    [25] Lin F, Fardad M, Jovanovic M R. Augmented Lagrangian approach to design of structured optimal state feedback gains. IEEE Transactions on Automatic Control, 2011, 56(12): 2923-2929
    [26] Fardad M, Lin F, Jovanovic M R. On the optimal design of structured feedback gains for interconnected systems. In: Proceedings of the 48th Conference on Decision and Control. Shanghai, China: IEEE, 2009. 978-983
    [27] Lin F, Fardad M, Jovanovic M R. Optimal control of vehicular formations with nearest neighbor interactions. IEEE Transactions on Automatic Control, 2012, 57(9): 2203-2218
    [28] De Castro G A, Paganini F. An IQC characterization of decentralized Lyapunov functions in spatially invariant arrays. In: Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, NV, USA: IEEE, 2002. 563-568
  • 加载中
计量
  • 文章访问数:  1797
  • HTML全文浏览量:  81
  • PDF下载量:  1361
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-13
  • 修回日期:  2013-02-13
  • 刊出日期:  2013-06-20

目录

    /

    返回文章
    返回