2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

惯性技术研究现状及发展趋势

王巍

王巍. 惯性技术研究现状及发展趋势. 自动化学报, 2013, 39(6): 723-729. doi: 10.3724/SP.J.1004.2013.00723
引用本文: 王巍. 惯性技术研究现状及发展趋势. 自动化学报, 2013, 39(6): 723-729. doi: 10.3724/SP.J.1004.2013.00723
WANG Wei. Status and Development Trend of Inertial Technology. ACTA AUTOMATICA SINICA, 2013, 39(6): 723-729. doi: 10.3724/SP.J.1004.2013.00723
Citation: WANG Wei. Status and Development Trend of Inertial Technology. ACTA AUTOMATICA SINICA, 2013, 39(6): 723-729. doi: 10.3724/SP.J.1004.2013.00723

惯性技术研究现状及发展趋势

doi: 10.3724/SP.J.1004.2013.00723
基金项目: 

国家自然科学基金(61175098);航天科技创新基金(CASC201102)资助

Status and Development Trend of Inertial Technology

Funds: 

Supported by National Natural Science Foundation of China(61175098) and Aerospace Science and Technology Innovation Fund(CASC201102)

  • 摘要: 基于惯性系统的运动信息动态精确测量技术是现代各类运载体制导与控制的基础,惯性技术是在各种复杂环境条件下自主地建立运动载体的方位、姿态基准的唯一有效手段. 本文介绍了惯性技术的发展历程和近年来国内外惯性技术发展与应用现状,阐述了惯性技术在主要领域的技术研究及应用成果,分析了我国惯性技术与国际先进水平的差距,展望了未来惯性技术的发展趋势.
  • [1] King A D. Inertial navigation-forty years of evolution. GEC Review, 1998, 13(3): 1-15
    [2] Lu Yuan-Jiu. Inertial Device (I & II). Beijing: China Astronautic Publishing House, 1990. 1-121 (陆元九. 惯性器件(上、下). 北京: 宇航出版社, 1990. 1-121)
    [3] Qin Yong-Yuan. Inertial Navigation. Beijing: Science Press, 2006. 3-42 (秦永元. 惯性导航. 北京: 科学出版社, 2006. 3-42)
    [4] Titterton D H, Weston J L. Strapdown Inertial Navigation Technology (Second edition). UK: The Institution of Electrical Engineers, 2004. 1-7
    [5] Wan De-Jun. Prospect of FOG's application in marine navigation. Journal of Chinese Inertial Technology, 2002, 10(1): 1-5 (万德钧. 展望FOG在舰艇导航中的应用. 中国惯性技术学报, 2002, 10(1): 1-5)
    [6] Gyurosi M. Russia develops strapdown inertial systems for missiles. Jane's Missiles and Rockets, 2006
    [7] Luo Bing, Wang An-Cheng, Wu Mei-Ping. A drive control scheme based on phase-control for silicon micromechanical gyroscopes. Acta Automatica Sinica, 2012, 38(2): 206-212 (罗兵, 王安成, 吴美平. 基于相位控制的硅微机械陀螺驱动控制技术. 自动化学报, 2012, 38(2): 206-212)
    [8] Lee P M, Jun B H, Choi H T, Hong S W. An integrated navigation systems for underwater vehicles based on inertial sensors and pseudo LBL acoustic transponders. In: Proceedings of the 2005 MTS/IEEE. South Korea: IEEE, 2005. 555-562
    [9] Bi Lan-Jin, Liu Yong-Zhi. The application and development tendency of precision guided weapon in modern war. Tactical Missile Technology, 2004, (6): 1-4 (毕兰金, 刘勇志. 精确制导武器在现代战争中的应用及发展趋势. 战术导弹技术, 2004, (6): 1-4)
    [10] Schmidt G T. INS/GPS technology trends. Advances in Navigation Sensors and Integration Technology, 2008
    [11] Wang Wei. Fiber Optic Gyroscope Inertial Navigation System. Beijing: China Astronautic Publishing House, 2010. 1-212 (王巍. 光纤陀螺惯性系统. 北京: 中国宇航出版社, 2010. 1-212)
    [12] Lim Y C, Lyou J. Transfer alignment error compensator design using H∞ filter. In: Proceeding of the 2002 American Control Conference. Anchorage, AK: IEEE, 2002. 1460-1465
    [13] Feng Shao-Jun, Yuan Xin. H∞ filtering and its application in INS ground alignment. Journal of Nanjing University of Aeronautics & Astronautics, 1998, 30(4): 383-387 (冯绍军, 袁信. H∞滤波及在惯导地面自对准中的应用. 南京航空航天大学学报, 1998, 30(4): 383-387)
    [14] Carvalho H, del Moral P, Monin A, Salut G. Optimal nonlinear filtering in GPS/INS integration. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3): 835-850
    [15] Aggarwal P, Syed Z, El-Sheimy N. Hybrid extended particle filter (HEPF) for integrated civilian navigation system. In: Proceedings of the 2008 Symposium on Position, Location, and Navigation. Monterey, CA: IEEE, 2008. 984-992
    [16] Yang Guo-Liang, Wang Wei, Xu Ye-Feng, Feng Pei-De. Research on installation error analysis and calibration for LSINS based on rotation modulation. Chinese Journal of Scientific Instrument, 2011, 32(2): 302-308 (杨国梁, 王玮, 徐烨烽, 冯培德. 旋转调制式激光捷联惯导安装误差分析与标定. 仪器仪表学报, 2011, 32(2): 302-308)
    [17] Li Wen-Bai, Liu Ming-Yong, Li Hu-Xiong, Chen Xue-Yong. Localization performance analysis of cooperative navigation system for multiple AUVs based on relative position measurements with a single leader. Acta Automatica Sinica, 2011, 37(6): 724-735(李闻白, 刘明雍, 李虎雄, 陈学永. 基于单领航者相对位置测量的多AUV协同导航系统定位性能分析. 自动化学报, 2011, 37(6): 724-735)
    [18] Morrow R B Jr, Heckman D W. High precision IFOG insertion into the strategic submarine navigation system. In: Proceedings of the 1998 Symposium on Position Location and Navigation. Palm Springs, CA: IEEE, 1998. 332-338
    [19] Liu Fei, Ma Lin. Status quo and trends of marine inertial navigation technology. Shipbuilding of China, 2011, 52(4): 282-293 (刘飞, 马林. 舰艇惯性导航技术现状及发展趋势. 中国造船, 2011, 52(4): 282-293)
    [20] Hassanain M A, Reda Taha M M, Noureldin A, El-Sheimy N. Automization of an INS/GPS integrated system using genetic optimization. In: Proceedings of the 5th International Symposium on Intelligent Automation and Control Seville. Spain, 2004. 347-352
    [21] Caron F, Duflos E, Pomorski D, Vanheeghe P. GPS/IMU data fusion using multisensor Kalman filtering: introduction of contextual aspects. Information Fusion, 2006, 7(2): 221-230
    [22] Hide C, Moore T, Smith M. Adaptive Kalman filtering for low-cost INS/GPS. Journal of Navigation, 2003, 56(1): 143-152
    [23] Mooij E, Chu Q P. Tightly-coupled IMU/GPS re-entry navigation system. In: Proceedings of the 2002 AIAA Guidance Navigation and Control Conference and Exhibit. Monterey, CA, 2002
    [24] Loebis D, Chudley J, Sutton R. A fuzzy Kalman filter optimized using a genetic algorithm for accurate navigation of an autonomous underwater vehicle. In: Proceedings of the 6th IFAC. 2003
    [25] Ahn H S, Won C H. Fast alignment using rotation vector and adaptive Kalman filter. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 70-83
    [26] Zhao Lin, Wang Xiao-Xu, Ding Ji-Cheng, Cao Wei. Overview of nonlinear filter methods applied in integrated navigation system. Journal of Chinese Inertial Technology, 2009, 17(1): 46-52, 58 (赵琳, 王小旭, 丁继成, 曹伟. 组合导航系统非线性滤波算法综述. 中国惯性技术学报, 2009, 17(1): 46-52, 58)
    [27] Yu H, Yang T C, Rigas D, Jayawant B V. Modelling and control of magnetic suspension systems. In: Proceedings of the 2002 IEEE International Conference on Control Applications. Glasgow, UK: IEEE, 2002. 944-949
    [28] Wang Wei. Interferometric Fiber Optic Gyroscope Technology. Beijing: China Astronautic Publishing House, 2010 (王巍. 干涉型光纤陀螺仪技术. 北京: 中国宇航出版社, 2010)
    [29] Sanders G A, Szafraniec B, Liu R Y, Laskoskie C L, Strandjord L K, Weed G. Fiber optic gyros for space, marine, and aviation applications. SPIE, 1996, 2837: 61-67
    [30] Pavlath G A. Fiber optic gyros: the vision realized. In: Proceedings of the 18th International Conference on Optical Fiber Sensors, 2006
    [31] Divakaruni S P, Sanders S J. Fiber optic gyros: a compelling choice for high precision applications. In: Proceedings of the 18th International Conference on Optical Fiber Sensors Conference, 2006
    [32] Rozelle D M. The hemispherical resonator gyro: from wineglass to the planets (AAS 09-176). In: Proceedings of the 19th AAS/AIAA Space Flight Mechanics Meeting. AIAA, 2009
    [33] Lynch D D. HRG development at Delco, Litton and Northrop Grumman, Anniversary Workshop at Yalta. In: Proceedings of the 2008 Anniversary Workshop at Yalta. Ukraine, 2008. 19-21
    [34] Hanse J G. Honeywell MEMS Inertial Technology & Product Status. In: Proceedings of the 2004 Symposium on Position Location and Navigation, 2004, 43-48
    [35] Gription A. The application and future development of a MEMS SiVSoledR for commercial and military inertial products. In: Proceedings of the 2002 Symposium on Position Location and Navigation. Palms Springs, CA: IEEE, 2002. 28-35
    [36] Benedict Olivier. The SiREUS MEMS rate sensor program. In: Proceedings of the 59th IAC International Astronautical Congress. Glasgow, Scotland, UK, 2008
    [37] Wang Wei, He Sheng. Development of MEMS inertial instrument technology. Missiles and Space Vehicles, 2009, (3): 23-28 (王巍, 何胜. MEMS惯性仪表技术发展趋势. 导弹与航天运载技术, 2009, (3): 23-28)
    [38] Zhang Liang-Tong, Li Ying. Recommend the use of IEEE standard of Coriolis vibration gyros and other inertial sensor. Ship Navigation, 2003, (3): 1-9 (张良通, 李影. 推荐使用的IEEE哥氏振动陀螺仪标准和其它惯性传感器标准. 舰船导航, 2003, (3): 1-9)
    [39] Durfee D S, Shaham Y K, Kasevich M A. Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope. Physical Review Letters, 2006, 97(24): 240801
    [40] Kasevich M, Chu S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Applied Physics B, 1992, 54(5): 321-332
    [41] Zhang Xue-Feng, Xu Jiang-Ning, Zhou Hong-Jin. Atom laser gyroscope. Journal of Chinese Inertial Technology, 2006, 14(5): 86-88(张学峰, 许江宁, 周红进. 原子激光陀螺. 中国惯性技术学报, 2006, 14(5): 86-88)
    [42] Deng Hong-Lun. Overview of quartz vibrating beam accelerometer. Control Technology of Tactical Missile, 2004, 21(4): 52-57 (邓宏论. 石英振梁加速度计概述. 战术导弹控制技术, 2004, 21(4): 52-57)
    [43] Le Traon O, Janiaud D, Muller S, Bouniol P. The VIA vibrating beam accelerometer: concept and performance. In: Proceedings of the 1998 Position Location and Navigation Symposium. Palm Springs, CA: IEEE, 1998. 25-29
    [44] Killen A, Tarrant D, Jensen D. High acceleration, high performance solid state accelerometer development. IEEE Aerospace and Electronic Systems Magazine, 1994, 9(9): 20-25
    [45] Hopkins R, Miola J, Sawyer W, Setterlund R, Dow B. The Silicon oscillating accelerometer: a high-performance MEMS accelerometer for precision navigation and strategic guidance application. In: Proceedings of the 61st Annual Meeting of the Institute of Navigation. Cambridge, MA: ION, 2005. 1043-1052
    [46] Wang W, Wang J L. Study of modulation phase drift in an interferometric fiber optic gyroscope. Optical Engineering, 2010, 49(11): 114401
    [47] Wang Wei, Yang Qing-Sheng, Wang Xue-Feng. Application of fiber-optic gyro in space and key technology. Infrared and Laser Engineering, 2006, 35(5): 509-512(王巍, 杨清生, 王学锋. 光纤陀螺的空间应用及其关键技术. 红外与激光工程, 2006, 35(5): 509-512)
    [48] Wang W, Wang X F, Xia J L. The influence of Er-doped fiber source under irradiation on fiber optic gyro. Optical Fiber Technology, 2012, 18(1): 39-43
    [49] Liu Hu, Fang Jian-Cheng, Liu Gang. Research on the stability of magnetic bearing system in magnetically suspended momentum wheel under on orbit condition. Journal of Astronautics, 2009, 30(2): 625-630 (刘虎, 房建成, 刘刚. 在轨条件下磁悬浮动量轮磁轴承系统稳定性研究. 宇航学报, 2009, 30(2): 625-630)
    [50] Zhu Bin, Zheng Juan. The development of US inertia navigation and guidance technology. Aerospace China, 2008, (1): 43-45(祝彬, 郑娟. 美国惯性导航与制导技术的新发展. 中国航天, 2008, (1): 43-45)
    [51] Wang Si, Deng Zheng-Long. Technique review of transfer alignment for inertial navigation systems on moving base. Journal of Chinese Inertial Technology, 2003, 11(2): 61-67 (王司, 邓正隆. 惯导系统动基座传递对准技术综述. 中国惯性技术学报, 2003, 11(2): 61-67)
    [52] Chaudhuri S K, Nandi P K. Transfer alignment for space vehicles launched from a moving base. Defense Science Journal, 2005, 55(3): 245-252
    [53] Chen Xun, Wen Xi-Sen. The situation summarization of environment experiment technology and integration environment stress experiment & analysis system. Journal of National University of Defense Technology, 1998, 20(6): 78-82 (陈循, 温熙森. 环境试验技术的现状综述与集成环境应力试验分析系统. 国防科技大学学报, 1998, 20(6): 78-82)
    [54] Hu J M. Life prediction and damage acceleration based on the power spectral density of random vibration. Journal of the IES, 1995, 38(1): 34-40
    [55] Krishnan K S, Lahti D G, Smith W D, Averett T M. Optical fiber attenuation in proton radiation. SPIE, 1996, 2811: 95-104
    [56] Ding Heng-Gao, He Xiao-Xia, Gao Zhong-Yu. The Application of Inertial Technology for Testing General Relativity. Beijing: Tsinghua University Press, 2005 (丁衡高, 贺晓霞, 高钟毓. 应用惯性技术验证广义相对论. 北京: 清华大学出版社, 2005)
  • 加载中
计量
  • 文章访问数:  4243
  • HTML全文浏览量:  172
  • PDF下载量:  5813
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-31
  • 修回日期:  2013-01-09
  • 刊出日期:  2013-06-20

目录

    /

    返回文章
    返回