2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于逆系统方法的DGMSCMG框架伺服系统解耦控制研究

陈晓岑 周东华 陈茂银

陈晓岑, 周东华, 陈茂银. 基于逆系统方法的DGMSCMG框架伺服系统解耦控制研究. 自动化学报, 2013, 39(5): 502-509. doi: 10.3724/SP.J.1004.2013.00502
引用本文: 陈晓岑, 周东华, 陈茂银. 基于逆系统方法的DGMSCMG框架伺服系统解耦控制研究. 自动化学报, 2013, 39(5): 502-509. doi: 10.3724/SP.J.1004.2013.00502
CHEN Xiao-Cen, ZHOU Dong-Hua, CHEN Mao-Yin. Decoupling Control of Gimbal Servo System of DGMSCMG Based on Dynamic Inverse System Method. ACTA AUTOMATICA SINICA, 2013, 39(5): 502-509. doi: 10.3724/SP.J.1004.2013.00502
Citation: CHEN Xiao-Cen, ZHOU Dong-Hua, CHEN Mao-Yin. Decoupling Control of Gimbal Servo System of DGMSCMG Based on Dynamic Inverse System Method. ACTA AUTOMATICA SINICA, 2013, 39(5): 502-509. doi: 10.3724/SP.J.1004.2013.00502

基于逆系统方法的DGMSCMG框架伺服系统解耦控制研究

doi: 10.3724/SP.J.1004.2013.00502
详细信息
    通讯作者:

    陈晓岑

Decoupling Control of Gimbal Servo System of DGMSCMG Based on Dynamic Inverse System Method

  • 摘要: 双框架磁悬浮控制力矩陀螺(Double-gimbal magnetically suspended control moment gyroscope, DGMSCMG)的框架伺服系统是一个多变量、非线性且强耦合的复杂系统. 为了进一步提高框架伺服系统的控制精度,本文提出了一种基于电流模式的动态逆系统解耦方法,通过对功放系统的动态补偿有效克服了未建模动态对解耦性能的影响,采用自适应滑模控制器有效提高了系统的跟踪特性. 对比仿真结果证明了该方法的有效性和优越性
  • [1] Roser X, Sghedoni M. Control moment gyroscopes (CMG's) and their application in future scientific missions. In: Proceedings of the 3rd International Conference on Spacecraft Guidance, Navigation and Control Systems. Netherlands: ESA, 1997. 523-528[2] Wei Tong, Fang Jian-Cheng. Moving-gimbal effects and angular rate feedforward control in magnetically suspended rotor system of CMG. Journal of Astronautics, 2005, 26(1): 19-23(魏彤, 房建成. 磁悬浮控制力矩陀螺的动框架效应及其角速率前馈控制方法研究. 宇航学报, 2005, 26(1): 19-23)[3] Wei Tong, Fang Jian-Cheng, Liu Zhu-Rong. Moving-gimbal effects compensation of double gimbal magnetically suspended control moment gyroscope based on compound control. Journal of Mechanical Engineering, 2010, 46(2): 159-165 (魏彤, 房建成, 刘珠荣. 双框架磁悬浮控制力矩陀螺动框架效应补偿方法. 机械工程学报, 2010, 46(2): 159-165)[4] Dong D F, Meng X F, Liang F. Decoupling control of double-level dynamic vacuum system based on neural networks and prediction principle. Vacuum, 2011, 86(2): 218-225[5] Chai T Y, Zhai L F, Yue H. Multiple models and neural networks based decoupling control of ball mill coal-pulverizing systems. Journal of Process Control, 2011, 21(3): 351-366[6] Garelli F, Mantz R J, De Battista H. Sliding mode compensation to preserve dynamic decoupling of stable systems. Chemical Engineering Science, 2007, 62(17): 4705-4716[7] Liu H B, Li S Y, Chai T Y. Intelligent decoupling control of power plant main steam pressure and power output. International Journal of Electrical Power and Energy Systems, 2003, 25(10): 809-819[8] Tao G, Ma X L, Ling Y. Optimal and nonlinear decoupling control of systems with sandwiched backlash. Automatica, 2001, 37(2): 165-176[9] Chien T L, Chen C C, Tsai M C, Chen Y C. Control of AMIRA's ball and beam system via improved fuzzy feedback linearization approach. Applied Mathematical Modelling, 2010, 34(12): 3791-3804[10] Zarchi H A, Markadeh Gh R A, Soltani J. Direct torque and flux regulation of synchronous reluctance motor drives based on input-output feedback linearization. Energy Conversion and Management, 2010, 51(1): 71-80[11] Li T H S, Huang C J, Chen C C. Novel fuzzy feedback linearization strategy for control via differential geometry approach. ISA Transactions, 2010, 49(3): 348-357[12] Yang Y F, Ruan Y, Zhang W Y, Wang Q, Yang Z B, Zhu H Q. Decoupling control of 5 degrees of freedom AC hybrid magnetic bearings based on inverse system method. In: Proceedings of the 30th Chinese Control Conference. Yantai, China: IEEE, 2011. 278-282[13] Fang J C, Ren Y. High-precision control for a single-gimbal magnetically suspended control moment gyro based on inverse system method. IEEE Transactions on Industrial Electronics, 2011, 58(9): 4331-4342[14] Fang J C, Ren Y. Self-adaptive phase-lead compensation based on unsymmetrical current sampling resistance network for magnetic bearing switching power amplifiers. IEEE Transactions on Industrial Electronics, 2012, 59(2): 1218-1227[15] Ren Y, Fang J C. Current-sensing resistor design to include current derivative in PWM H-bridge unipolar switching power amplifiers for magnetic bearings. IEEE Transactions on Industrial Electronics, 2012, 59(12): 4590-4600[16] Liu Jin-Kun. Sliding Mode Variable Structure Control MATLAB Simulation. Beijing: Tsinghua University Press, 2005. 427-436(刘金琨. 滑模变结构控制 MATLAB 仿真. 北京: 清华大学出版社, 2005. 427-436)
  • 加载中
计量
  • 文章访问数:  1563
  • HTML全文浏览量:  45
  • PDF下载量:  1326
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-15
  • 修回日期:  2012-10-09
  • 刊出日期:  2013-05-20

目录

    /

    返回文章
    返回