2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多重局部重构模型的连续过程故障诊断

赵春晖 李文卿 孙优贤 高福荣

赵春晖, 李文卿, 孙优贤, 高福荣. 基于多重局部重构模型的连续过程故障诊断. 自动化学报, 2013, 39(5): 487-493. doi: 10.3724/SP.J.1004.2013.00487
引用本文: 赵春晖, 李文卿, 孙优贤, 高福荣. 基于多重局部重构模型的连续过程故障诊断. 自动化学报, 2013, 39(5): 487-493. doi: 10.3724/SP.J.1004.2013.00487
ZHAO Chun-Hui, LI Wen-Qing, SUN You-Xian, GAO Fu-Rong. Multiple Local Reconstruction Model-based Fault Diagnosis for Continuous Processes. ACTA AUTOMATICA SINICA, 2013, 39(5): 487-493. doi: 10.3724/SP.J.1004.2013.00487
Citation: ZHAO Chun-Hui, LI Wen-Qing, SUN You-Xian, GAO Fu-Rong. Multiple Local Reconstruction Model-based Fault Diagnosis for Continuous Processes. ACTA AUTOMATICA SINICA, 2013, 39(5): 487-493. doi: 10.3724/SP.J.1004.2013.00487

基于多重局部重构模型的连续过程故障诊断

doi: 10.3724/SP.J.1004.2013.00487
详细信息
    通讯作者:

    赵春晖

Multiple Local Reconstruction Model-based Fault Diagnosis for Continuous Processes

  • 摘要: 为了提高故障诊断性能, 本文对故障特征随时间发展变化的多样性进行了探讨分析. 本文揭示了故障过程呈现时变特性, 即故障过程在不同时段反映出不同的变量相关性, 提出了一种故障时段划分算法. 该算法将故障划分为不同时段, 在每一个时段中, 故障特征被认为是基本类似的. 在此基础上, 针对不同时段建立了不同的故障分解模型, 并揭示了不同故障状态与正常状态的关系. 通过划分不同故障特征, 可以区分不同的故障特征, 建立更精确的重构模型. 该方法很好地阐述了故障的演变行为特征, 能够更精确地进行故障重构从而确定故障原因. 通过在田纳西伊士曼仿真过程上的应用验证了该方法的可行性及诊断性能.
  • [1] Hsu C C, Su C T. An adaptive forecast-based chart for non-Gaussian processes monitoring: with application to equipment malfunctions detection in a thermal power plant. IEEE Transactions on Control Systems Technology, 2011, 19(5): 1245-1250
    [2] [2] Samara P A, Fouskitakis G N, Sakellariou J S, Fassois S D. A statistical method for the detection of sensor abrupt faults in aircraft control systems. IEEE Transactions on Control Systems Technology, 2008, 16(4): 789-798
    [3] [3] Zhao C H, Wang F L, Lu N Y, Jia M X. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes. Journal of Process Control, 2007, 17(9): 728-741
    [4] [4] Qin S J. Statistical process monitoring: basics and beyond. Journal of Chemometrics, 2003, 17(8-9): 480-502
    [5] [5] Qian C, Kruger U. Analysis of extended partial least squares for monitoring large-scale processes. IEEE Transactions on Control Systems Technology, 2005, 13(5): 807-813
    [6] [6] Ayhan B, Mo Y C, Myung H S. Multiple discriminant analysis and neural-network-based monolith and partition fault-detection schemes for broken rotor bar in induction motors. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1298-1308
    [7] [7] Kruger U, Kumar S, Littler T. Improved principal component monitoring using the local approach. Automatica, 2007, 43(9): 1532-1542
    [8] [8] Alcala C F, Qin S J. Reconstruction-based contribution for process monitoring. Automatica, 2009, 45(7): 1593-1600
    [9] [9] Zhao C H, Wang F L, Gao F R, Lu N Y, Jia M X. Adaptive monitoring method for batch processes based on phase dissimilarity updating with limited modeling data. Industrial and Engineering Chemistry Research, 2007, 46(14): 4943- 4953
    [10] Zhao C H, Gao F R, Wang F L. Phase-based joint modeling and spectroscopy analysis for batch processes monitoring. Industrial and Engineering Chemistry Research, 2010, 49(2): 669-681
    [11] Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1-3): 37-52
    [12] Burnham A J, Viveros R, MacGregor J F. Frameworks for latent variable multivariate regression. Journal of Chemometrics, 1996, 10(1): 31-45
    [13] Dayal B S, MacGregor J F. Improved PLS algorithms. Journal of Chemometrics, 1997, 11(1): 73-85
    [14] Raich A, Cinar A. Statistical process monitoring and disturbance diagnosis in multivariable continuous processes. AIChE Journal, 1996, 42(4): 995-1009
    [15] Yoon S, MacGregor J F. Fault diagnosis with multivariate statistical models part I: Using steady state fault signatures. Journal of Process Control, 2001, 11(4): 387-400
    [16] Kano M, Hasebe S, Hashimoto I, Ohno H. Statistical process monitoring based on dissimilarity of process data. AIChE Journal, 2002, 48(6): 1231-1240
    [17] Qin S J, Li W H. Detection and identification of faulty sensors in dynamic processes. AIChE Journal, 2001, 47(7): 1581 -1593
    [18] Dunia R, Qin S J. Subspace approach to multidimensional fault identification and reconstruction. AIChE Journal, 1998, 44(8): 1813-1831
    [19] Yue H H, Qin S J. Reconstruction-based fault identification using a combined index. Industrial and Engineering Chemistry Research, 2001, 40(20): 4403-4414
    [20] Valle S, Qin S J, Piovoso M J. Extracting fault subspaces for fault identification of a polyester film process. In: Proceedings of the 2001 IEEE American Control Conference. Arlington, VA, USA: IEEE, 2001. 4466-4471
    [21] Lieftucht D, Volker M, Sonntag C, Kruger U, Irwin G W, Engell S. Improved fault diagnosis in multivariate systems using regression-based reconstruction. Control Engineering Practice, 2009, 17(4): 478-493
    [22] Gang L, Alcala C F, Qin S J, Zhou D H. Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the Tennessee Eastman process. IEEE Transactions on Control Systems Technology, 2011, 19(5): 1114-1127
    [23] Zhao C H, Wang F L, Mao Z Z, Lu N Y, Jia M X. Quality prediction based on phase-specific average trajectory for batch processes. AIChE Journal, 2008, 54(3): 693-705
    [24] Downs J J, Vogel E F. A plant-wide industrial process control problem. Computers and Chemical Engineering, 1993, 17(3): 245-255
  • 加载中
计量
  • 文章访问数:  1544
  • HTML全文浏览量:  53
  • PDF下载量:  1689
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-17
  • 修回日期:  2012-11-06
  • 刊出日期:  2013-05-20

目录

    /

    返回文章
    返回