2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

汽车控制的研究现状与展望

陈虹 宫洵 胡云峰 刘奇芳 高炳钊 郭洪艳

陈虹, 宫洵, 胡云峰, 刘奇芳, 高炳钊, 郭洪艳. 汽车控制的研究现状与展望. 自动化学报, 2013, 39(4): 322-346. doi: 10.3724/SP.J.1004.2013.00322
引用本文: 陈虹, 宫洵, 胡云峰, 刘奇芳, 高炳钊, 郭洪艳. 汽车控制的研究现状与展望. 自动化学报, 2013, 39(4): 322-346. doi: 10.3724/SP.J.1004.2013.00322
CHEN Hong, GONG Xun, HU Yun-Feng, LIU Qi-Fang, GAO Bing-Zhao, GUO Hong-Yan. Automotive Control: the State of the Art and Perspective. ACTA AUTOMATICA SINICA, 2013, 39(4): 322-346. doi: 10.3724/SP.J.1004.2013.00322
Citation: CHEN Hong, GONG Xun, HU Yun-Feng, LIU Qi-Fang, GAO Bing-Zhao, GUO Hong-Yan. Automotive Control: the State of the Art and Perspective. ACTA AUTOMATICA SINICA, 2013, 39(4): 322-346. doi: 10.3724/SP.J.1004.2013.00322

汽车控制的研究现状与展望

doi: 10.3724/SP.J.1004.2013.00322
详细信息
    通讯作者:

    陈虹

Automotive Control: the State of the Art and Perspective

  • 摘要: 汽车控制技术是推动汽车工业可持续发展的重要保障. 在全球汽车行业竞争日益激烈 的背景下, 如何通过理论与方法的创新, 提高我国汽车控制系统的自主研发能力, 完成从消费大国 向制造强国的过渡是我们目前面临的重大挑战. 本文主要围绕汽车动力总成系统、主动安全系统及新能源汽车中的关键控制问题展开论述, 总结国内外的研究状况, 提炼共性问题, 对汽车控制的发展趋势给出了一些观点.
  • [1] Isermann, R. Mechatronic systems——innovative products with embedded control. iControl Engineering Practice/i, 2008, b16/b(1): 14-29br[2] Liu Xiao-Liang, Wang Sheng-Chang, Li Mao-Yue. Research on air-fuel ratio control and time delay. iHighways and Automotive Applications/i, 2008, (2): 11-14(刘晓亮, 王生昌, 李茂月. 汽油机空燃比控制和时间延迟的研究.公路与汽运, 2008, (2): 11-14)br[3] Hou Zhi-Xiang, Wu Yi-Hu, Shen Qun-Tai. Advanced control strategies for engine transient air/fule ratio. iTransactions of CSICE/i, 2003, b21/b(5): 369-373(侯志祥, 吴义虎, 申群太. 车用汽油机过渡工况空燃比的先进控制策略.内燃机学报, 2003, b21/b(5): 369-373)br[4] Jia Xiu-Min. Air-fuel Ratio Control Based on State Observer [Master dissertation], Jilin University, China,2009(贾秀敏. 基于状态观测器的空燃比控制 [硕士学位论文], 吉林大学, 中国,2009)br[5] Zou Bo-Wen. Research on Model-based Control Technology on Air-fuel Ratio of Gasoline Engine [Ph.,D. dissertation], Zhejiang University, China,2006(邹博文. 基于模型的汽油机空燃比控制技术研究 [博士学位论文],浙江大学, 中国, 2006)br[6] Wang S W, Yu D L, Gomm J B, Page G F, Douglas S S. Adaptive neural network model based predictive control for air-fuel ratio of SI engines. iEngineering Applications of Artificial Intelligence/i, 2006, b19/b(2): 189-200br[7] Gao You-Shan. Air-fuel ratio precision mapping with combustion products components. iVehicle and Power Technology/i, 2008, (1): 22-26 (高有山. 基于排气成分的空燃比精确映射检测. 车辆与动力技术, 2008,(1): 22-26)br[8] Yildiz Y, Annaswamy A, Yanakiev D, Kolmanovsky I. Adaptive air fuel ratio control for internal combustion engines. In: Proceedings of the 2008 American Control Conference. Seattle, USA: IEEE, 2008. 2058-2063br[9] Qu Ling. Analysis and Research on Automotive Engine Air-Fuel Ratio Control Strategy [Master dissertation], Harbin Institute of Technology, China,2009(曲玲. 汽车发动机空燃比控制方法的分析与研究 [硕士学位论文],哈尔滨工业大学, 中国, 2009)br[10] He B, Shen T L, Kako J, Ouyang M G. Input observer-based individual cylinder air-fuel ratio control: modelling, design and validation. iIEEE Transactions on Control Systems Technology/i, 2008, b16/b(5): 1057-1065br[11] Cavina N, Corti E, Moro D. Closed-loop individual cylinder air-fuel ratio control via UEGO signal spectral analysis. iControl Engineering Practice/i, 2010, b18/b(11): 1295-1306br[12] Wang Li, Liu De-Xin. Sliding mode-neural network control for air-fuel ratio of lean burn gasoline engine and experiment research. iJournal of Tianjin University/i, 2006, b39/b(S1): 51- 56(王莉, 刘德新. 稀燃汽油机空燃比滑模——神经网络控制及实验.天津大学学报, 2006, b39/b(增): 51-56)br[13] Zhang F, Grigoriadis K M, Franchek M A, Makki I H. Transient lean burn air-fuel ratio control using input shaping method combined with linear parameter-varying control. In: Proceedings of the 2006 American Control Conference. Minnesota, USA: IEEE, 2006. 3290-3295br[14] Zhou Neng-Hui, Xie Hui, Zhao Hua, Chen Tao. Air/fuel ratio control of gasoline HCCI engine based on neural network. iTransactions of the Chinese Society for Agricultural Machinery/i, 2009, b40/b(6): 1-5(周能辉, 谢辉, 赵华, 陈韬.基于神经网络的汽油HCCI发动机空燃比控制策略. 农业机械学报, 2009, 40(6): 1-5)br[15] Mckay D, Nichols G, Schreurs B. Delphi electronic throttle control systems for model year 2000; diver features, system security, and OEM benefits, ETC for the mass market. In: Proceedings of the 2000 SAE World Congress. Detroit, USA: SAE, 2000. 2000-01-0556br[16] Yang C. Model-based analysis and tuning of electronic throttle controllers. In: Proceedings of the 2004 SAE World Congress. Detroit, USA: SAE, 2004. 2004-01-0524br[17] Hashimoto E, Ishiguro T, Yasui Y, Akazaki S. High reliability electronic throttle system design. In: Proceedings of the 2003 SAE World Congress. Detroit, USA: SAE, 2003. 2003-01-0708br[18] Chen L F, Chen R. A fuzzy immune PID controller for electronic throttle. In: Proceedings of the 2nd International Symposium on Computational Intelligence and Design. Changsha, China: IEEE, 2009. 72-75br[19] Ingram G, Franchek M, Balakrishnan V. Spark ignition engine mass air flow control for precise torque management. In: Proceedings of the 2003 SAE World Congress. Detroit, USA: SAE, 2003. 2003-01-0624br[20] Va#353;ak M, Baoti#263; M, Morari M, Petrovi#263; I, Peri#263; N. Constrained optimal control of an electronic throttle. iInternational Journal of Control/i, 2006, b79/b(5): 465-478br[21] Song Tong-Hao. Electronic Throttle Control Based on Backstepping [Master dissertation], Jilin University, China,2009(宋同好. 基于Backstepping的电子节气门控制 [硕士学位论文], 吉林大学,2009)br[22] Jin W W, Jin D M, Zhang X. VLSI design and implementation of a fuzzy logic controller for engine idle speed. In: Proceedings of the 7th International Conference on Solid-State and Integrated Circuits Technology. Beijing, China: IEEE, 2004, b3/b: 2067-2070br[23] Mohtadi A R, Torabi H, Osmani M. Design of neuro-fuzzy controller for idle speed control. In: Proceedings of the 9th WSEAS International Conference on Neural Networks. Sofia, Bulgaria: WSEAS Press, 2008. 181-185br[24] Zhang Zhen-Dong, Zhou Ping, Zhang Min. Research on idle speed fuzzy control algorithm for an electronically controlled engine. iTransactions of the Chinese Society of Agricultural Machinery/i, 2000, b31/b(6): 75-77(张振东, 周萍, 张旻. 电控发动机怠速控制模糊算法研究. 农业机械学报,2000, b31/b(6): 75-77)br[25] Zhao Guang-Zhou, Yang Zhi-Jia. The application of neural network fuzzy controller in engine idle speed control. iChinese Internal Combustion Engine Engineering/i, 2000, b21/b(1): 59-62(赵光宙, 杨志家. 应用神经网络模糊控制器的发动机怠速控制. 内燃机工程,2000, b21/b(1): 59-62)br[26] Cao J L, Yin J M, Shin J S, Lee H H. BP network modified by particle swarm optimization and its application to online-tuning PID parameters in idle-speed engine control system. In: Proceedings of the 2009 ICROS-SICE International Joint Conference. Fukuoka, Japan: IEEE, 2009. 3663 -3666br[27] Han Yi-Lun, Zhang Cui-Ping, Yang Qing-Fu. Study on gasoline engine idle speed control based on expert system. iChinese Internal Combustion Engine Engineering/i, 2003, b24/b(1): 35-38(韩以仑, 张翠平, 杨庆佛.基于专家系统的汽车发动机怠速控制的仿真实验研究. 内燃机工程, 2003,b24/b(1): 35-38)br[28] Scillieri J J, Buckland J H, Freudenberg J S. Reference feedforward in the idle speed control of a direct-injection spark-ignition engine. iIEEE Transactions on Vehicular Technology/i, 2005, b54/b(1): 51-61br[29] Scillieri J J, Buckland J H, Freudenberg J S. Use of feedforward in idle speed control for a direct injection spark ignition engine during lean burn. In: Proceedings of the 2002 American Control Conference. Anchorage, USA: IEEE, 2002. 1419-1424br[30] Alt B, Blath J P, Svaricek F, Schultalbers M. Multiple sliding surface control of idle engine speed and torque reserve with load torque estimation. In: Proceedings of the 10th International Workshop on Variable Structure Systems. Antalya, Turkey: IEEE, 2008. 47-54br[31] Alt B, Blath J P, Svaricek F, Schultalbers M. Control of idle engine speed and torque reserve with higher order sliding modes. In: Proceedings of the 2009 IEEE International Conference on Control Applications. Saint Petersburg, Russia: IEEE, 2009. 363-369br[32] Sun P, Powell B, Hrovat D. Optimal idle speed control of an automotive engine. In: Proceedings of the 2002 American Control Conference, Illinois, USA: IEEE, 2002. 1018-1026br[33] Jergaard K, Nielsen S, Vesterholm T, Hendicks E. Advanced nonlinear engine idle speed control systems. In: Proceedings of the 1994 SAE World Congress. Detroit, USA: SAE, 1994. 940974.br[34] Guo Hong-Zhi. Gasoline Engine Control Strategy on Idle Working Condition [Ph.,D. dissertation], Jilin University, China,2009(郭宏志. 汽油发动机怠速工况下控制方法的研究 [博士学位论文],吉林大学, 中国, 2009)br[35] Li Shu. Idle Speed Controller for SI Engines Based on Hybrid Systems Model [Ph.,D. dissertation], Jilin University, China,2010(李姝. 基于混合系统模型的SI汽油发动机怠速控制 [博士学位论文],吉林大学, 中国, 2010)br[36] Li S, Chen H, Ma M M. Model predictive control based on linear programming for engine idle speed control. In: Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation. Changchun, China: IEEE, 2009. 1167-1172br[37] Li S, Chen H, Yu S Y. Nonlinear model predictive control for idle speed control of SI engine. In: Proceedings of the 48th IEEE Conference on Decision and Control, and 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 6590-6595br[38] Zhu G G, Daniels C F, Winkelman J. MBT timing detection and its closed-loop control using in-cylinder pressure signal. In: Proceedings of the 2003 SAE World Congress. Detroit, USA: SAE, 2003. 2003-01-3266br[39] Haskara I, Zhu G, Winkelman J. IC engine retard ignition timing limit detection and control using in-cylinder ionization signal. In: Proceedings of the 2004 SAE World Congress. Detroit, USA: SAE, 2004. 2004-01-2977br[40] Cui H W. Research of optimizing ignition control system in gaseous fuel engine based on RBF neural network. In: Proceedings of the 2008 International Conference on Intelligent Computation Technology and Automation. Changsha, China: IEEE, 2008. 399-403br[41] Tien H, Vishy K. Fuzzy expert system to estimate ignition timing for hydrogen car. In: Proceedings of the 5th International Symposium on Neural Networks. Beijing, China: Springer Verlag, 2008. 570-579br[42] Bober T, Shih F Y. Image processing-based methodology for optimizing automotive ignition timing. iIEEE Transactions on Vehicular Technology/i, 2009, b58/b(1): 85-92br[43] Hillion M, Chauvin J, Petit N. Open-loop combustion timing control of a spark-ignited engine. In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 2008. 5635-5642br[44] Wu Ping-You, Huang He, Cheng Qing. The engine knock analysis and control. iTransactions on Transmission Technology/i, 2003, b17/b(3): 36-38, 6(吴平友, 黄河, 程庆. 汽油发动机爆震分析与控制. 传动技术, 2003, 17(3): 36-38)br[45] Du Zhi-Wei, Tian Yi. Design and realization of spark ignition automotive engine knock sensor signal process circuit. iJournal of North China Institute of Science and Technology/i, 2007, b4/b(2): 79-81(杜志伟, 田奕. 燃油喷射汽车发动机爆震传感器信号处理电路的设计与实现.华北科技学院学报, 2007, b4/b(2): 79-81)br[46] Wang Yan-Yan, Yang Jian-Guo, Song Bao-Yu. Knock signal analysis for gasoline engines based on discrete wavelet transform. iJournal of Beijing University of Aeronautics and Astronautics/i, 2009, b35/b(10): 1166-1169(王彦岩, 杨建国, 宋宝玉. 基于DWT的汽油机爆震信号分析.北京航空航天大学学报, 2009, b35/b(10): 1166-1169)br[47] Wan Man-Ying, Wang Jun-Xiong, Deng Zhen-Quan, Shi Xi-Ju. Vehicle engine knock analysis and control. iNoise and Vibration Control/i, 2001, b21/b(3): 43-47(万曼影, 王俊雄, 邓真全, 施锡钜. 汽车发动机的爆震分析与控制.噪声与振动控制, 2001, b21/b(3): 43-47)br[48] Cai Chang-Gui, Huang Shao-Jiong. Gasoline engine knock control based on spark control arithmetic. iJournal of Agricultural Mechanization Research/i, 2006, (8): 200-202 (蔡昌贵, 黄韶炯. 基于点火控制算法的汽油机爆震控制. 农机化研究, 2006,(8): 200-202)br[49] Yuichi S, Masato N, Daijiro T, Ei T. SI engine combustion flame propagation measurement and knocking analysis by lon current probes including moving intake and exhaust valve faces. In: Proceedings of the 2007 SAE World Congress. Detroit, USA: SAE, 2007. 2007-01-1420br[50] Chen Xian-Zhang, Xie Yue-Xiao, Yang Dong-Lai, Zhang Miao. The strategy and experimental research on knock control of an EFI gasoline engine. iAutomotive Engineering/i, 2005, b27/b(1): 31-34(陈贤章, 谢悦孝, 杨东来, 张淼. 电喷汽油机爆燃控制的策略及试验研究.汽车工程, 2005, b27/b(1): 31-34)br[51] Ogaji S O T, Marinai L, Sampath S, Singh R, Prober S D. Gas-turbine fault diagnostics: a fuzzy-logic approach. iApplied Energy/i, 2005, b82/b(1): 81-89br[52] Wang X, Kruger U, Irwin G W, McCullough G, McDowell N. Nonlinear PCA with the local approach for diesel engine fault detection and diagnosis. iIEEE Transactions on Control Systems Technology/i, 2008, b16/b(1): 122-129br[53] Murphey Y L, Chen Z H, Feldkamp L A. An incremental neural learning framework and its application to vehicle diagnostics. iApplied Intelligence/i, 2008, b28/b(1): 29-49br[54] Wang Y S, Chu F L. Real-time misfire detection via sliding mode observer. iMechanical Systems and Signal Processing/i, 2005, b19/b(4): 900-912br[55] Stotsky A A. Statistical engine knock detection. iAutomotive Engines/i. Berlin Heidelberg: Springer-Verlag, 2009br[56] Wang M H, Chao K H, Sung W T, Huang G J. Using ENN-1 for fault recognition of automotive engine. iExpert Systems with Applications/i, 2010, b37/b(4): 2943-2947br[57] Luo J H, Pattipati K R, Qiao L, Chigusa S. An integrated diagnostic development process for automotive engine control systems. iIEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews/i, 2007, b37/b(6): 1163 -1173br[58] Antony D. Application of a data-driven monitoring technique to diagnose air leaks in an automotive diesel engine: a case study. iMechanical Systems and Signal Processing/i, 2007, b21/b(2): 795-808br[59] Namburu S M, Chigusa S, Prokhorov D, Qiao L, Choi K, Pattipati K. Application of an effective data-driven approach to real-time time fault diagnosis in automotive engines. In: Proceedings of the 2007 IEEE Aerospace Conference. Big Sky, USA: IEEE, 2007. 1-9br[60] Butt Q R, Bhatti A I. Estimation of gasoline-engine parameters using higher order sliding mode. iIEEE Transactions on Industrial Electronics/i, 2008, b55/b(11): 3891-3898br[61] Choi K, Singh S, Kodali A, Pattipati K R, Sheppard J W, Namburu S M, Chigusa S, Prokhorov D V, Qiao L. Novel classifier fusion approaches for fault diagnosis in automotive systems. iIEEE Transactions on Instrumentation and Measurement/i, 2009, b58/b(3): 602-611br[62] Gerhardt J, H\"{onninger H, Bischof H. A new approach to functional and software structure for engine management systems —— BOSCH ME7. In: Proceedings of the 1998 SAE World Congress. Detroit, USA: SAE, 1998. 980801br[63] Heintz N, Mews M, Stier G, Beaumont A J, Noble A D. An approach to torque-based engine management systems. In: Proceedings of the 2001 SAE World Congress. Detroit, USA: SAE, 2001. 2001-01-0269br[64] Livshiz M, Chynoweth S J, Kaiser J M, Clutz R H, Dibble D L. Coordinated Engine Torque Control, USA. Patent 7021282B1, June 2006br[65] Livshiz M, Kao M H, Will A. Engine torque control variation analysis. In: Proceedings of the 2008 SAE World Congress. Detroit, USA: SAE, 2008. SAE 2008-01-1016br[66] Livshiz M, Babcock D J, Dulzo J R, Ritzen E. Torque Control of Turbocharged Engine, USA. Patent 7395147, July 2008br[67] Lin Jian-Sheng, Huang He. Study of the torque control strategy in EFI. iDrive System Technique/i, 2006, b20/b(1): 24-27(林建生, 黄河. 对基于转矩控制策略的电喷系统的研究. 传动技术, 2006,b20/b(1): 24-27)br[68] Mencher B, Jessen H, Kaiser L, Gerhardt J. Preparing for CARTRONIC interface and new strategies for torque coordination and conversion in a spark ignition engine management system. In: Proceedings of the 2001 SAE World Congress. Detroit, USA: SAE 2001. 2001-01-0268br[69] Sans M. Generic integrated power train management IPM? interface as a standard. In: Proceedings of the 2001 SAE World Congress. Detroit, USA: SAE, 2001. 2001-01-1326br[70] Keller F, Streib M, Holzinger O, Leonhard R, Golzer T. Electronic System for a Motor Vehicle, US Patent 5351776, Octorber 1994br[71] Yu Shi-Tao, Zhou Xing-Li, Yang Xiao-Feng, Gong Yuan-Ming, Yang Lin, Zhuo Bin. Research on torque based control simulation model for electronic unit pump diesel engine. iChinese Internal Combustion Engine Engineering/i, 2006, b27/b(2): 29-32(于世涛, 周兴利, 杨晓峰, 龚元明, 杨林, 卓斌.基于扭矩控制的电控单体泵柴油机仿真模型的研究. 内燃机工程, 2006, 27(2): 29-32)br[72] Ali A, Blath J P. Application of modern techniques to SI-engine torque control. In: Proceedings of the 2006 IEEE International Conference on Control Applications. Munich, Germany: IEEE, 2006. 2405-2410br[73] Leroy T, Chauvin J, Petit N. Motion planning for experimental air path control of a variable-valve-timing spark ignition engine. iControl Engineering Practice/i, 2009, b17/b(12): 1432-1439br[74] Chauvin J, Corde G, Petit N, Rouchon P. Motion planning for experimental airpath control of a diesel homogeneous charge-compression ignition engine. iControl Engineering Practice/i, 2008, b16/b(9): 1081-1091br[75] Ryu W, Cho N, Yoo I, Song H, Kim H. Performance analysis of a CVT clutch system for a hybrid electric vehicle. iInternational Journal of Automotive Technology/i, 2009, b10/b(1): 115 -121br[76] Lei Y L, Gao B Z, Tian H, Ge A L, Yan S. Throttle control strategies in the process of integrated powertrain control. iChinese Journal of Mechanical Engineering (English Edition)/i, 2005, b18/b(3): 429-433br[77] Tanaka H, Wada H. Fuzzy control of clutch engagement for automated manual transmission. iVehicle System Dynamics/i, 1995, b24/b(4-5): 365-376br[78] Slicker J M, Chan K W. Method and Apparatus for Slip Mode Control of Automatic Clutch, USA. Patent 5630773, May 1997br[79] Bemporad A, Borrelli F, Morari M. Robust model predictive control: piecewise linear explicit solution. In: Proceedings of the 2001 European Control Conference. Porto, Portugal: Aculdade de Engenharia da Universidade do Porto, 2001. 939-944br[80] Dolcini P, Bechart H, Canudas de Wit C. Observer-based optimal control of dry clutch engagement. In: Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain: IEEE, 2005. 440-445br[81] Lu X H, Chen H, Wang P, Gao B Z. Design of a data-driven predictive controller for start-up process of AMT vehicles. iIEEE Transactions on Neural Networks/i, 2011, b22/b(12): 2201 -2212br[82] Glielmo L, Vasca F. Optimal control of dry clutch engagement. In: Proceedings of the 2000 SAE World Congress. Detroit, USA: SAE, 2000. 2000-01-0837br[83] David J, Natarajan N. Design of an optimal clutch controller for commercial trucks. In: Proceedings of the 2005 American Control Conference. Portland, USA: IEEE, 2005. 1599- 1606br[84] Liu C H. Touch Point Identification for Vehicle Master Clutch, USA. Patent 6022295, November 1998br[85] Bemporad A, Morari M. Robust model predictive control: a survey.i Lecture Notes in Control and Information Sciences/i, 1999, 245: 207-226br[86] Balluchi A, Benvenuti L, Ferrari A, Sangiovanni-Vincentelli L A. Hybrid systems in automotive electronics design. iInternational Journal of Control/i, 2006, b79/b(5): 375-394br[87] van der Heijden A C, Serrarens A F A, Camlibel M K, Nijmeijer H. Hybrid optimal control of dry clutch engagement. iInternational Journal of Control/i, 2007, b80/b(11): 1717-1728br[88] Watson M, Byington C, Edwards D, Amin S. Dynamic modeling and wear-based remaining useful life prediction of high power clutch systems. iSTLE Tribology Transactions/i, 2005, b48/b(2): 208-217br[89] Pettersson M, Nielsen L. Gear shifting by engine control. iIEEE Transactions on Control Systems Technology/i, 2000, b8/b(3): 495-507br[90] Dolcini P, de Wit C C, B\'{echart H. Lurch avoidance strategy and its implementation in AMT vehicles. iMechatronics/i, 2008, b18/b(5-6): 289-300br[91] Horn J, Bamberger J, Michau P, Pindl S. Flatness-based clutch control for automated manual transmissions. iControl Engineering Practice/i, 2003, b11/b(12): 1353-1359br[92] Pettersson M. Driveline Modeling and Control [Ph.,D. dissertation], Link Oping University, Sweden, 1997br[93] Gao B Z, Lei Y L, Ge A L, Chen H, Sanada K. Observer-based clutch disengagement control during gear shift process of automated manual transmission. iVehicle System Dynamics/i, 2011, b49/b(5): 685-701br[94] Goetz M, Levesley M C, Crolla D A. Dynamics and control of gearshifts on twin-clutch transmissions. iProceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering/i, 2005, b219/b(8): 951-963br[95] Ishihara T. iAutomotive Engineering Handbook 9, Drivetrain/i. Tokyo: Sankaido Publishing, 1980br[96] Haj-Fraj A, Pfeiffer F. Optimal control of gear shift operations in automatic transmissions. iJournal of the Franklin Institute/i, 2001, b338/b(2-3): 371-390br[97] Crowther A, Zhang N, Liu D K, Jeyakumaran J K. Analysis and simulation of clutch engagement judder and stick-slip in automotive powertrain systems. iProceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering/i, 2004, b218/b(12): 1427-1446br[98] Gao B Z, Chen H, Tian L, Sanada K. A nonlinear clutch pressure observer for automatic transmission: considering drive-shaft compliance. iJournal of Dynamic Systems, Measurement, and Control, Transactions of the ASME/i, 2012, b134/b(1): 1-8br[99] Walker P D, Zhang N, Tamba R. Control of gear shifts in dual clutch transmission powertrains. iMechanical Systems and Signal Processing/i, 2011, b25/b(6): 1923-1936br[100] Haj-Fraj A, Pfeiffer F. A model based approach for the optimisation of gearshifting in automatic transmissions. iInternational Journal of Vehicle Design/i, 2002, b28/b(1-3): 171-188br[101] Cho D. Nonlinear Control Methods for Automotive Powertrain Systems [Ph.,D. dissertation], Massachusetts Institute of Technology, USA, 1988br[102] Gao B Z, Chen H, Sanada K, Hu Y F. Design of clutch-slip controller for automatic transmission using backstepping. iIEEE/ASME Transactions on Mechatronics/i, 2011, b16/b(3): 498-508br[103] Yokoyama M. Sliding mode control for automatic transmission systems. iJournal of the Japan Fluid Power System Society/i, 2008, b39/b(1): 34-38br[104] Gao B Z, Chen H, Sanada K. Two-degree-of-freedom controller design for clutch slip control of automatic transmission. In: Proceedings of the 2008 SAE World Congress. Detroit, USA: SAE, 2008. 2008-01-0537br[105] Sanada K, Kitagawa A. A study of two-degree-of-freedom control of rotating speed in an automatic transmission, considering modeling errors of a hydraulic system. iControl Engineering Practice/i, 1998, b6/b(9): 1125-1132br[106] Minowa T, Ochi T, Kuroiwa H, Liu K Z. Smooth gear shift control technology for clutch-to-clutch shifting. In: Proceedings of the 1999 SAE World Congress. Detroit, USA: SAE, 1999. 1999-01-1054br[107] Brown L T, Hrovat D D. Transmission Clutch Loop Transfer Control, USA. Patent 4790418, December 1988br[108] Berriri M, Chevrel P, Lefebvre D. Active damping of automotive powertrain oscillations by a partial torque compensator. iControl Engineering Practice/i, 2008, b16/b(7): 874-883br[109] Lu X H, Chen H, Zhang H Y, Wang P, Gao B Z. Design of model predictive controller for anti-jerk during tip-in/out process of vehicles. In: Proceedings of the 30th Chinese Control Conference. Yantai, China: 2011. 3395-3400br[110] Umbach F, Acker H, von Kluge J, Langheinrich W. Contactless measurement of torque. iMechatronics/i, 2002, b12/b(8): 1023-1033br[111] Merry R J E, van de Merry M J G, Steinbuch M. Velocity and acceleration estimation for optical incremental encoders. iMechatronics/i, 2010, b20/b(1): 20-26br[112] Baumann J, Torkzadeh D D, Ramstein A, Kiencke U, Schlegl T. Model-based predictive anti-jerk control. iControl Engineering Practice/i, 2006, b14/b(3): 259-266br[113] Pettersson M, Nielsen L. Diesel engine speed control with handling of driveline resonances. iControl Engineering Practice/i, 2003, b11/b(3): 319-328br[114] Masmoudi R A, Hedrick J K. Estimation of vehicle shaft torque using nonlinear observers. iJournal of Dynamic Systems, Measurement, and Control/i, 1992, b114/b(3): 394-400br[115] Yi K, Shin B K, Lee K L. Estimation of turbine torque of automatic transmissions using nonlinear observers. iJournal of Dynamic Systems, Measurement, and Control/i, 2000, b122/b(2): 276-283br[116] Gao B Z, Chen H, Ma Y, Sanada K. Design of nonlinear shaft torque observer for trucks with automated manual transmission. iMechatronics/i, 2011, b21/b(6): 1034-1042br[117] Gao B Z, Chen H, Zhao H Y, Sanada K. A reduced-order nonlinear clutch pressure observer for automatic transmission. iIEEE Transactions on Control Systems Technology/i, 2010, b18/b(2): 446-453br[118] Gao B Z, Chen H, Li J, Tian L, Sanada K. Observer-based feedback control during torque phase of clutch-to-clutch shift process. iInternational Journal of Vehicle Design/i, 2012, b58/b(1): 93-108br[119] Jiang Qiang, Liu Hong-Yi, Yang Xin-Hua, Cheng Yue. Research on thespeed ratio control for the EM-CVT based on the improved PIDalgorithm. iJournal of Mechanical Transmission/i, 2012, 36(5): 14-17 (蒋强, 柳洪义, 杨新桦, 程越.基于改进PID算法的EM-CVT速比 控制研究. 机械传动, 2012, b36/b(5):14-17)br[120] Liu J G, Zhou Y S, Cai Y C, Su J Y, Zou N W. The application of generalized predictive control in CVT speed ratio control. In: Proceedings of the 2007 IEEE International Conference on Automation and Logistics. Jinan, China: IEEE, 2007. 649-654br[121] Xue D L, Zhang Y K, Zheng L Z, Zhang B Y. Speed ratio control of metal V-belt type CVT. iTransactions of the Chinese Society for Agricultural Machinery/i, 2003, b34/b(3): 8-11br[122] Sun Z X, Hebbale K. Challenges and opportunities in automotive transmission control. In: Proceedings of the 2005 American Control Conference. Portland, USA: IEEE, 2005. 3284-3289br[123] Uchida M, Katakuta S, Yasuoka M, Yoshino T. An integrated control algrithm for an SI Engine and CVT. iSAE paper/i, 1999. 1999-01-0752br[124] Kim T, Kim H. Integrated engine-CVT control considering powertrain response lag in acceleration. iKSME International Journal/i, 2000, b14/b(7): 764-772br[125] Huang Ning-Jun. Automotive active safety technology in qualitative change. iLight Vehicles/i, 2000, (2): 32-35(黄宁军. 质变中的汽车主动安全技术. 轻型汽车技术, 2000, (2): 32-35br[126] Liao Chuan-Jin, Qin Xiao-Hu, Huang Xi-Yue. The state of arts of human-centered vehicle active safety technology. iComputer Simulation/i, 2004, b21/b(9): 152-156(廖传锦, 秦小虎, 黄席樾. 以人为中心的汽车主动安全技术综述.计算机仿真, 2004, b21/b(9): 152-156)br[127] Wang Wei-Da, Ding Neng-Gen, Zhang Wei, Yu Gui-Zhen, Xu Xiang-Yang. Research and verification of the logic threshold self-adjusting control method for ABS. iJournal of Mechanical Engineering/i, 2010, b46/b(22): 90-95(王伟达, 丁能根, 张为, 余贵珍, 徐向阳.ABS逻辑门限值自调整控制方法研究与试验验证. 机械工程学报, 2010, 46(22): 90-95)br[128] Zhang Q, Liu G F, Wang Y K, Zhou T T. Study of calculation method of wheel angular acceleration in ABS system. In: Proceedings of the 2004 International Conference on Information Acquisition. Hefei, China: IEEE, 2004. 147-150br[129] Li Xiang-Gui. PID control strategy and simulation analysis of ABS systerm. iMechanical Research and Application/i, 2011, (5): 20-22, 25(李香桂. 汽车ABS系统的PID控制策略及仿真分析. 机械研究与应用, 2011,(5): 20-22, 25)br[130] Sharkawy A B. Genetic fuzzy self-tuning PID controllers for antilock braking systems. iEngineering Applications of Artificial Intelligence/i, 2010, b23/b(7): 1041-1052br[131] Zhang Feng, Luo Ying-Hong. Fuzzy PID and simulation analysis of vehicle ABS system. iMechanical and Electrical Information/i, 2011, (9): 92-93(张凤, 罗映红. 汽车ABS模糊PID控制方法的仿真研究. 机电信息, 2011,(9): 92-93)br[132] Zhang Xiang-Wen, Wang Fei-Yue. Influence of the tire dynamic friction property on the vehicle ABS control system. iAutomobile Technology/i, 2010, (12): 26-32(张向文, 王飞跃. 轮胎动态摩擦特性对汽车ABS控制系统的影响. 汽车技术,2010, (12): 26-32)br[133] Fang Y, Chu L, Sun W F, Shang M L, Zhou F K, Guo J H. Identification and control of split-\mu road for antilock braking system. In: Proceedings of the 2nd International Conference on Advanced Computer Control. Shenyang, China: IEEE, 2010. 298-301br[134] Wang W Y, Li I H, Chen M C, Su S F, Hsu S B. Dynamic slip-ratio estimation and control of antilock braking systems using an observer-based direct adaptive fuzzy-neural controller. iIEEE Transactions on Industrial Electronics/i, 2009, b56/b(5): 1746-1756br[135] Mirzaei A, Moallem M, Dehkordi B M, Fahimi B. Design of an optimal fuzzy controller for antilock braking systems. iIEEE Transactions on Vehicular Technology/i, 2006, b55/b(6): 1725-1730br[136] Xu Ming-Tao, Li Jin-Song, Jin Zhi-Yang. Stimulation research on algorithms of automobile ABS fuzzy control based on slip ratio. iAgricultural Equipment and Vehicle Engineering/i, 2010, (2): 21-23(许明涛, 李劲松, 金志扬. 基于滑移率的汽车ABS模糊控制算法仿真研究.农业装备与车辆工程, 2010, (2): 21-23)br[137] Zhang Xiang-Wen, Wang Fei-Yue. Studies on adaptive fuzzy sliding mode control algorithm for the vehicle ABS. iAutomobile Technology/i, 2009, (10): 25-30(张向文, 王飞跃. 汽车ABS自适应模糊滑模控制算法研究. 汽车技术, 2009,(10): 25-30)br[138] Jing H H, Liu Z Y, Chen H. A switched control strategy for antilock braking system with on/off valves. iIEEE Transactions on Vehicular Technology/i, 2011, b60/b(4): 1470-1484br[139] Shim T, Chang S Y, Lee S. Investigation of sliding-surface design on the performance of sliding mode controller in antilock braking systems. iIEEE Transactions on Vehicular Technology/i, 2008, b57/b(2): 747-759br[140] Kayacan E, Oniz Y, Kaynak O. A grey system modeling approach for sliding-mode control of antilock braking system. iIEEE Transactions on Industrial Electronics/i, 2009, b56/b(8): 3244-3252br[141] Garg A, Pavlovic V, Huang T S. Bayesian networks as ensemble of classifiers. In: Proceedings of the 16th International Conference on Pattern Recognition. Quebec City, Canada: IEEE, 2002. 779-784br[142] Mao Yan-E, Jing Yuan-Wei, Zhang Si-Ying, Zhou Zhen-Hui, Wang Yan. On variable structure control with sliding mode for automotive anti-lock braking systems. iJournal of System Simulation/i, b20/b(5): 1243-1245, 1288(毛艳娥, 井元伟, 张嗣瀛, 周振辉, 王艳.汽车ABS滑模变结构控制方法的研究. 系统仿真学报, 2008, b20/b(5):1243-1245, 1288)br[143] Zhao Zhi-Guo, Fang Zong-De, Li Jie. Research on adaptive sliding mode controller for anti-lock braking system (ABS). iMechanical Science and Technology/i, 2002, b21/b(1): 6-9(赵治国, 方宗德, 李杰. 防抱制动系统参数自适应滑模变结构控制器的研究.机械科学与技术, 2002, b21/b(1): 6-9)br[144] Liu Bo. An Investigation of Vehicle Anti-lock Braking System Based on Adaptive Sliding Mode Control Method [Master dissertation], National University of Defense Technology, China,2006(刘波. 基于自适应滑模控制方法的车辆防抱死制动系统的研究[硕士学位论文], 国防科学技术大学, 中国, 2006)br[145] Tong K F. Simultaneous Plant/Controller Optimization of Traction Control for Electric Vehicle [Master dissertation], University of Waterloo, Waterloo, 2007br[146] Emig R, Sehramm H. Electronic traction control for commercial vehicles-the logical expansion of ABS. In: Proceedings of the 1987 International Conference on New Development in Powertrain and Chassis Engineering. Strasbourg, Germany: Verein Deutscher Ingenieure, 1987. 431-445br[147] Alrfed S, Demel H. ASR-traction control, state of the art and some prospects. iSAE/i, 1990. 900204br[148] Lennon W K, Passino K M. Intelligent control for brake systems. iIEEE Transactions on Control Systems Technology/i, 1999, b7/b(2): 188-200br[149] Bosch Technical Instruction. Braking System for PassengerCars, Technical Report, Bosch Company, Germany, 1995br[150] Colli V D, Tomassi G, Scarano M. "Single wheel" longitudinal traction control for electric vehicles. iIEEE Transactions on Power Electronics/i, 2006, b21/b(3): 799-808br[151] Deur J, Pavkovi\'{c D, Burgio G, Hrovat D. A model-based traction control strategy non-reliant on wheel slip information. iVehicle System Dynamics/i, 2011, b49/b(8): 1245-1265br[152] Zhao Zhi-Guo, Gu Jun, Yu Zhuo-Ping. Study of acceleration slip regulation strategy for four wheel drive hybrid electriccar. iJournal of Mechanical Engineering/i 2011, b47/b(14):83-98 (赵治国, 顾君, 余卓平. 四轮驱动混合动力轿车驱动防滑控制研究.机械工程学报. 2011, b47/b(14): 83-98)br[153] Li Jing, Li You-De, Zhao Jian, Song Da-Feng. A research on fuzzy PI control for traction control system. iAutomotive Engineering/i, 2004, b26/b(3): 287-290, 330(李静, 李幼德, 赵健, 宋大凤. 牵引力控制系统模糊PI控制方法研究.汽车工程, 2004, b26/b(3): 287-290, 330)br[154] Guo Kong-Hui, Wang De-Ping. A preliminary theoretical study on anti slip regulation. iJournal of Jilin University of Technology (Natural Science Edition)/i, 1997, b27/b(3): 1-5(郭孔辉, 王德平. 汽车驱动防滑控制理论的初步研究.吉林工业大学学报(自然科学版), 1997, b27/b(3): 1-5)br[155] Yasui Y, Tozu K, Hattori N, Sugisawa M. Improvement of vehicle directional stability for transient steering maneuvers using active brake control. In: Proceedings of the 1996 SAE World Congress. Detroit, USA: SAE, 1996. 960485br[156] Koibuchi K, Yamamoto M, Fukada Y, Inagaki S. Vehicle stability control in limit cornering by active brake. iJSAE Review/i, 1996, b16/b(3): 323-323br[157] Daily R, Bevly D M. The use of GPS for vehicle stability control systems. iIEEE Transactions on Industrial Electronics/i, 2004, b51/b(2): 270-277br[158] Zheng S B, Tang H J, Han Z Z, Zhang Y. Controller design for vehicle stability enhancement. iControl Engineering Practice/i, 2006, b14/b(12): 1413-1421br[159] Boada B L, Boada M J L, D\'{iaz V. Fuzzy-logic applied to yaw moment control for vehicle stability. iVehicle System Dynamics/i, 2005, b43/b(10): 753-770br[160] Zhou H L, Liu Z Y. Vehicle yaw stability-control system design based on sliding mode and Backstepping control approach. iIEEE Transactions on Vehicular Technology/i, 2010, b59/b(7): 3674-3678br[161] Canale M, Fagiano L, Razza V. Vehicle lateral stability control via approximated NMPC: real-time implementation and software-in-the-loop test. In: Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 4596-4601br[162] Borrelli F, Falcone P, Keviczky T, Asgari J, Hrovat D. MPC-based approach to active steering for autonomous vehicle systems. iInternational Journal of Vehicle Autonomous Systems/i, 2005, b3/b(2-4): 265-291br[163] Falcone P, Tseng H E, Borrelli F, Asgari J, Hrovat D. MPC-based yaw and lateral stabilisation via active front steering and braking. iVehicle System Dynamics/i, 2009, b46/b(supplement): 611-628br[164] Anton T, Zanten V. Bosch ESP systems: 5 years of experience. In: Proceedings of the 2000 SAE World Congress. Detroit, USA: SAE, 2000. 2000-01-1633br[165] Wang De-Ping, Guo Kong-Hui. Research on the principle and tactics of vehicle dynamics stability control. iChinese Journal of Mechanical Engineering/i, 2000, b36/b(3): 97-99 (王德平, 郭孔辉. 车辆动力学稳定性控制的控制原理与控制策略研究. 机械工程学报, 2000, b36/b(3): 97-99)br[166] Tang Y M. The Research of Electronic Stability Program Control Based on Direct Yaw Moment Control [Master dissertation], Chang’an University, China, 2009br[167] Li Jing, Zhang Jian, Yang Kun, Wang Kun, Wei Qing, Wu Zhen-Xin. Development of ECU software and hardware-in-the-loop simulation for stability control of vehicle with electro-mechanical brake. iJournal of Jilin University (Engineering and Technology Edition)/i, 2011, b41/b(4): 893-897(李静, 张建, 杨坤, 王坤, 魏青, 吴振昕.电子机械制动汽车稳定性控制电控单元软件开发及硬件在环试验.吉林大学学报(工学版), 2011, b41/b(4): 893-897)br[168] Xiong Lu, Yu Zhuo-Ping, Jiang Wei, Jiang Zao-Yun. Research on vehicle stability control of 4WD electric vehicle based on longitudinal force control allocation. iJournal of Tongji University (Natural Science)/i, 2010, b38/b(3): 417-421, 426(熊璐, 余卓平, 姜炜, 蒋造云.基于纵向力分配的轮边驱动电动汽车稳定性控制.同济大学学报(自然科学版), 2010, b38/b(3): 417-421, 426)br[169] Hrovat D. Survey of advanced suspension development and relatedoptimal control applications. iAutomatica/i, 1997, b33/b(10):1781-1817br[170] Fialho I, Balas G J. Road adaptive active suspension designusing linear parameter-varing gain-scheduling. iIEEETransactions on Control System Technology/i, 2002, b10/b(1):43-54br[171] Li Y, Liu S J. Preview control of an active vehicle suspension system based on a four-degree-of-freedom half-car model. In: Proceedings of the 2nd International Conference on Intelligent Computation Technology and Automation. Changsha, China: IEEE, 2009, b1/b: 826-830br[172] Tuan HD, Ono E, Apkarian P. Nonlinear H_\infty control for an integratedsuspension system via parameterized linear matrix inequalitycharacterization. iIEEE Transactions on Control SystemTechnology/i, 2001, b9/b(1): 175-185br[173] Smith M, Wang F C. Controller parameterization for disturbanceresponse decoupling: application to vehicle active suspensioncontrol. iIEEE Transactions on Control System Technology/i, 2002,b10/b(3): 393-407br[174] Chen H, Guo K H. Constrained H_\infty control of active suspension: anLMI approach. iIEEE Transactions on Control Systems Technology/i,2005, b13/b(3): 412-421br[175] Chen Hong, Ma Miao-Miao, Sun Peng-Yuan. Multi-objective control design for active suspensions: an LMI approach. iActa Automatica Sinica/i, 2006, b32/b(3): 550-559(陈虹, 马苗苗, 孙鹏远. 基于LMI优化的主动悬架多目标控制. 自动化学报,2006, b32/b(3): 550-559)br[176] Chen Hong, Ma Miao-Miao, Sun Peng-Yuan. Hsub2/sub/genera- lized Hsub2/sub output feedback control for active suspensions. iControl Theory and Applications/i, 2007, b24/b(5): 790-794(陈虹, 马苗苗, 孙鹏远. 主动悬架Hsub2/sub/广义Hsub2/sub输出反馈控制.控制理论与应用, 2007, b24/b(5): 790-794)br[177] Ma M M, Chen H. Disturbance attenuation control of active suspension with non-linear actuator dynamics. iIET Control Theory and Application/i, 2010, b5/b(1): 112-122br[178] Cao D P, Song X B, Ahmadian M. Editors' perspective: road vehiclesuspension design, dynamics, and control. iVehicle SystemDynamics: International Journal of Vehicle Mechanics and Mobility/i,2011, b49/b(1-2): 1-34br[179] Dickmanns E D, M\"{uller N. Scene recognition and navigation capabilities for lane changes and turns in vision-based vehicle guidance. iControl Engineering Practice/i, 1996, b4/b(5): 589-599br[180] Gge D W. A brief history of unmanned ground vehicle (VGV) development efforts. iUnmanned Systems/i, 1995, b13/b: 9-32br[181] Sukthankar R, Hancock J, Baluja S, Pomerleau D, Thorpe C. Adaptive intelligent vehicle modules for tactical driving. In: Proceedings of the 1996 AAAI-1996 Workshop on Intelligent Adaptive Agents. Portland, USA: The Robotics Institute, 1996. 13-22br[182] Broggi A, Bertozzi M, Fascioli A, Lo C, Piazzi B. The ARGO autonomous vehicle's vision and control systems. iInternational Journal of Intelligent Control and Systems/i, 1999, b3/b(4): 409-441br[183] Bertozzi M, Broggi A, Cardarelli E, Fedriga R I, Mazzei L, Porta P P. VIAC expedition toward autonomous mobility. iIEEE Robotics and Automation Magazine/i, 2011, b18/b(3): 120 -124br[184] Sun Zhen-Ping. An Intelligent Control System for Autonomous Land Vehicle [Ph.,D. dissertation], National University of Defense Technology, China,2004(孙振平. 自主驾驶汽车智能控制系统[博士学位论文],国防科学技术大学,中国, 2004)br[185] Iagnemma K, Buehler M. Editorial for journal of field robotics —— special issue on the DARPA grand challenge, part 1. iJournal of Field Robotics/i, 2006, b23/b(8): 461-462br[186] Iagnemma K, Buehler M. Editorial for journal of field robotics —— special issue on the DARPA grand challenge, part 2. iJournal of Field Robotics/i, 2006, b23/b(9): 655-656br[187] Shladover S E. Review of the state of development of advanced vehicle control systems. iVehicle System Dynamics/i, 1995, b24/b(6-7): 551-595br[188] Yamamura Y, Seto Y, Nishira H, Kawabe T. An ACC design method for achieving both string stability and ride comfort. iJournal of System Design and Dynamics/i, 2008, b2/b(4): 979-990br[189] Yi K, Hong J, Kwon Y D. A vehicle control algorithm for stop-and-go cruise control. iProceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering/i, 2001, b215/b(10): 1099-1115br[190] Zhou Liang, Li Ke-Qiang, Lian Xiao-Min, Ukawa H, Handa M, Idonuma H. Vehicle-to-vehicle distance control algorithm for stop-go cruise control system. iJournal of Tsinghua University (Science and Technology)/i, 2004, b44/b(8): 1138-1141(周亮, 李克强, 连小珉, Ukawa H, Handa M, Idonuma H."起-停"巡航控制系统的纵向车距控制方法. 清华大学学报(自然科学版), 2004, b44/b(8): 1138-1141)br[191] Wu Mo, An Xiang-Jing, He Han-Gen. On vision-based lane departure detection approach. iJournal of Image and Graphics/i, 2007, b12/b(1): 110-115(吴沫, 安向京, 贺汉根. 基于视觉的车道跑偏检测方法研究及仿真.中国图象图形学报, 2007, b12/b(1): 110-115)br[192] Parag H B. Driver-Adaptive Lane Departure Warning Systems [Ph.,D. dissertation], Carnegie Mellon University, Pittsburgh, PA, 1999br[193] Muller B, Deutscher J, Grodde S. Trajectory generation and feedforward control for parking a car. In: Proceedings of the 2004 IEEE International Conference on Control Applications. Munich, Germany: IEEE, 2006. 163-168br[194] Dakhlallah J, Glaser S, Mammar S. Tire-road forces estimation using extended Kalman filter and sideslip angle evaluation. In: Proceedings of the 2008 American Control Conference. Seattle, USA: IEEE, 2008. 4597-4602br[195] Baffet G, Charara A, Lechner D, Thomas D. Experimental evaluation of observers for tire-road forces, sideslip angle and wheel cornering stiffness. iVehicle System Dynamics/i, 2008, b46/b(6): 501-520br[196] Matu#353;ko J, Petroi#263; I, Peri#263; N. Neural network based tire/road friction force estimation. iEngineering Applications of Artificial Intelligence/i, 2008, b21/b: 442-456br[197] El Hajjaji A, Chadli M, Oudghiri M, Pages O. Observer-based robust fuzzy control for vehicle lateral dynamics. In: Proceedings of the 2006 American Control Conference. Minneapolis, USA: IEEE, 2006. 4664-4669br[198] Zhao H Y, Chen H. Estimation of vehicle yaw rate and side slip angle using moving horizon strategy. In: Proceedings of the 6th World Congress on Control and Automation. Dalian, China: IEEE, 2006. 1828-1832br[199] Zhao Lin-Hui, Liu Zhi-Yuan, Chen Hong. Approach to nonlinear estimation of vehicle state. iJournal of System Simulation/i, 2009, b21/b(6): 1710-1718 (赵林辉, 刘志远, 陈虹. 一种车辆状态的非线性估计方法研究.系统仿真学报, 2009, b21/b(6): 1710-1718)br[200] Ehsani M, Gao Y M, Gay S E, Emadi A. iModern Electric, Hybrid Electric, and Fuel Cell Vehicles Fundamentals, Theory and Design/i. Boca Raton: CRC, 2004br[201] Sundstr#246;m O, Soltic P, Guzzella L. A transmission-actuated energy-management strategy. iIEEE Transactions on Vehicular Technology/i, 2010, b59/b(1): 84-92br[202] Chen Z, Mi C C. An adaptive online energy management controller for power-split HEV based on dynamic programming and fuzzy logic. In: Proceedings of the 2009 Vehicle Power and Propulsion Conference. Dearborn, United States: IEEE, 2009. 335-339br[203] Streib H M, Leonhard R. Hierarchical control strategy for powertrain functions. In: Proceedings of the 1992 SAE World Congress. Detroit, USA: SAE, 1992. 925052br[204] Shen Ming-Xing, Yang Nong-Lin. Modeling and simulation of fuzzy logic control strategy on parallel hybrid electrical vehicle. iMachinery and Electronics/i, 2006, (12): 50-53(沈明星, 杨农林. PHEV模糊逻辑控制策略的建模与仿真. 机械与电子, 2006,(12): 50-53)br[205] Staffan J. Shunt and Shuffle Evaluation for Vehicle Powertrains [Master dissertation], Chalmers University of Technology, Swedish, 2004br[206] Staffan J, Eirik L, Stefan P. Objective evaluation of shunt and shuffle in vehicle powertrains. In: Proceedings of the 7th International Symposium on Advanced Vehicle Control. Arnhem, Netherlands: Nature Science, 2004br[207] Gu Yan-Chun, Yin Cheng-Liang, Zhang Jian-Wu. Investigation to coordinated torque control strategy of parallel hybrid electric vehicles. iJournal of System Simulation/i, 2007, b19/b(3): 631-636(古艳春, 殷承良, 张建武. 并联混合动力汽车扭矩协调控制策略仿真研究.系统仿真学报, 2007, b19/b(3): 631-636)br[208] Miller J M. Power electronics in hybrid electric vehicle applications. In: Proceedings of the 2003 Applied Power Electronic Conference and Exposition. Miami Beach, USA: IEEE, 2003. 23-29br[209] Ishikawa K, Suda K, Sasaki M, Miyazaki H. A 600,V driver IC with new short protection in hybrid electric vehicle IGBT inverter system. In: Proceedings of the 17th International Symposium on Power Semiconductor Devices and ICs. Sanata Barbara, USA: IEEE, 2005. 59-62br[210] Guo Jun, Li Xue-Feng, Tang Guang-Di, Liu Wen-Zhou. Optimization control method of series hybrid electric vehicle APU. iBus Technology and Research/i, 2009, b31/b(4): 13-15(郭俊, 李雪峰, 唐广迪, 刘文洲. 串联式混合动力汽车APU优化控制方法.客车技术与研究, 2009, b31/b(4): 13-15)br[211] Sun Feng-Chun, Shen Tong-Quan, Cheng Xi-Ming, Mou Bing-Heng. Identification for the auxiliary power unit in a hybrid electric vehicle. iTransactions of Beijing Institute of Technology/i, 2007, b27/b(9): 777-781(孙逢春, 沈同全, 程夕明, 牟炳恒.混合动力电动汽车辅助功率单元模型辨识. 北京理工大学学报, 2007, 27(9): 777-781)br[212] Wu Shao-Jian, Tao Yuan-Fang. Concept and design of extended range electric vehicles. iMechanical Engineering and Automation/i, 2010, (5): 209-210, 213(吴韶建, 陶元芳. 增程式电动汽车的概念与设计方案. 机械工程与自动化,2010, (5): 209-210, 213)br[213] Wolschendorf J, Rzemien K, Gian D J. Development of, electric and range-extended electric vehicles through collaboration partnerships. In: Proceedings of the 2010 SAE World Congress. Detroit, USA: 2010. 2010-01-2344br[214] Cheng K W E, Divakar B P, Wu H J, Ding K, Ho H F. Battery-management system (BMS) and SOC development for electrical vehicles. iIEEE Transactions on Vehicular Technology/i, 2011, b60/b(1): 76-88br[215] Lin Cheng-Tao, Wang Jun-Ping, Chen Quan-Shi. Methods for state of charge estimation of EV batteries and their application. iBattery Bimonthly/i, 2004, b34/b(5): 376-378(林成涛, 王军平, 陈全世. 电动汽车SOC估计方法原理与应用. 电池, 2004,b34/b(5): 376-378)br[216] Piller S, Perrin M, Jossen A. Methods for state-of-charge determination and their applications. iJournal of Power Sources/i, 2001, b96/b(1): 113-120br[217] You Shuang. SOC Estimating of Ni/MH Battery Band Using Neural Network [Master dissertation], Tianjin University, China,2007(游双.镍氢电池组SOC神经网络估算策略研究 [博士学位论文], 天津大学,中国, 2007)br[218] Lin Cheng-Tao, Chen Quan-Shi, Wang Jun-Ping, Huang Wen Hua, Wang Yan Chao. Improved Ah counting method for state of charge estimation of electric vehicle batteries. iJournal of Tsinghua University (Science and Technology)/i, 2006, b46/b(2): 247-251(林成涛, 陈全世, 王军平, 黄文华, 王燕超.用改进的安时计量法估计电动汽车动力电池SOC. 清华大学学报(自然科学版),2006, b46/b(2): 247-251)br[219] Salkind A J, Fennie C, Singh P, Atwater T, Reisner D E. Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology. iJournal of Power Sources/i, 1999, b80/b(1-2): 293-300br[220] Xu L, Wang J P, Chen Q S. Kalman filtering state of charge estimation for battery management system based on a stochastic fuzzy neural network battery model. iEnergy Conversion and Management/i, 2012, b53/b(1): 33-39br[221] Chan C C, Lo E W C, Shen W X. The available capacity computation model based on artificial neural network for lead-acid batteries in electric vehicles. iJournal of Power Sources/i, 2000, b87/b(1-2): 201-204br[222] Domenico D D, Fiengo G, Stefanopoulou A. Lithium-ion battery state of charge estimation with a Kalman filter based on a electrochemical model. In: Proceedings of the 2008 IEEE Conference on Control Applications. San Antonio, USA: IEEE, 2008. 702-707br[223] Dai Hai-Feng, Wei Xue-Zhe, Sun Ze-Chang. Estimate state of charge of power lithium-ion batteries used on fuel cell hybrid vehicle with method based on extended Kalman filtering. iChinese Journal of Mechanical Engineering/i, 2007, b43/b(2): 92-95, 103(戴海峰, 魏学哲, 孙泽昌.基于扩展卡尔曼滤波算法的燃料电池车用锂离子动力电池荷电状态估计.机械工程学报, 2007, b43/b(2): 92 -95, 103)br[224] He H W, Xiong R, Zhang X W, Sun F C, Fan J X. State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved thevenin model. iIEEE Transactions on Vehicular Technology/i, 2011, b60/b(4): 1461-1469br[225] Wang J P, Guo J G, Ding L. An adaptive Kalman filtering based state of charge combined estimator for electric vehicle battery pack. iEnergy Conversion and Management/i, 2009, b50/b(12): 3182-3186br[226] Ehret C, Piller S, Schroer W, Jossen A. State-of-charge determination for lead-acid batteries in PV-applications. In: Proceedings of the 2000 European Photovoltaic Solar Energy Conference. Glasgow, UK: SIGLE, 2000. 1-4br[227] Pei Sheng, Chen Cheng-Quan, Lin Cheng-Tao. Study on estimating method for battery state of charge based on support vector regression. iChinese Journal of Power Sources/i, 2007, b31/b(3): 242-243, 252(裴晟, 陈成全, 林成涛. 基于支持向量回归的电池SOC估计方法研究.电源技术, 2007, b31/b(3): 242-243, 252)br[228] Hansen T, Wang C J. Support vector based battery state of charge estimator. iJournal of Power Sources/i, 2005, b141/b(2): 351-358br[229] Kim I S. Nonlinear state of charge estimator for hybrid electric vehicle battery. iIEEE Transactions on Power Electronics/i, 2008, b23/b(4): 2027-2034br[230] Kim I S. A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer. iIEEE Transactions on Power Electronics/i, 2010, b25/b(4): 1013 -1022br[231] Bose C S C, Laman F C. Battery state of health estimation through coup de fouet. In: Proceedings of the 2000 Telecommunications Energy Conference. Phoenix, USA: IEEE 2000. 597-601br[232] Damlund I. Analysis and interpretation of AC-measure- ments on batteries used to assess state-of-health and capacity-condition. In: Proceedings of the 1995 IEEE Tele- communications and Energy Conference. Hague, Netherlands: IEEE, 1995. 828-833br[233] Cox D C, Perez-Kite R. Battery state of health monitoring combining conductance technology with other measurement parameters for real-time battery performance analysis. In: Proceedings of the 2000 IEEE Telecommunications and Energy Conference. Phoenix Arizona, USA: IEEE, 2000. 342- 347br[234] Jordy C, Liska J L, Saft M. Life duration of saft Ni-MH batteriesfor EV application. In: Proceedings of the 1999 Electrical VehiclesSymposium. Beijing, China: EVS16, 1999. 10br[235] Ning G, Haran B, Popov B N. Capacity fade study of lithium-ion batteries cycled at high discharge rates. iJournal of Power Sources/i, 2003, b117/b(1-2): 160-169br[236] Ramadass P, Haran B, Whit R, Popov B N. Mathematical modeling of the capacity fade of li-ion cells. iJournal of Power Sources/i, 2003, b123/b(2): 230-240br[237] Salkind A J, Fennie C, Singh P, Atwater T, Reisner D E. Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology. iJournal of Power Sources/i, 1999, b80/b(1-2): 293-300br[238] Tanaami A, Morimoto M. On-line estimation of SOH for lead-acid battery. In: Proceedings of the 2009 International Conference on Power Electronics and Drive Systems. Taipei, China: IEEE, 2009. 1552-1555br[239] Chiang Y H, Sean W Y. Dynamical estimation of state-of-health of batteries by using adaptive observer. In: Proceedings of the 2009 International Conference on Power Electronics and Intelligent Transportation System. Shenzhen, China: IEEE, 2009. 110-115br[240] Singh P, Kaneria S, Broadhead J, Wang X, Burdick J. Fuzzy logic estimation of SOH of 125Ah VRLA batteries. In: Proceedings of the 26th Annual International Telecommunications Energy Conference. Chicago, USA: IEEE, 2004. 524- 531br[241] Barlak C, \"{Ozkazanc Y. A classification based methodology for estimation of state-of-health of rechargeable batteries. In: Proceedings of the 6th International Conference on Electrical and Electronics Engineering. Bursa, Turkey: IEEE, 2009. 101-105br[242] Gould C R, Bingham C M, Stone D A, Bentley P. New battery model and state-of-health determination through subspace parameter estimation and state-observer techniques. iIEEE Transactions On Vehicular Technology/i, 2009, b58/b(8): 3905-3916br[243] Chan C C, Chau K T. An advanced permanent magnet motor drive system for battery-powered electric vehicles. iIEEE Transactions on Vehicular Technology/i, 1996, b45/b(1): 180- 188br[244] Chan C C, Chau K T. An overview of power electronics in electric vehicles. iIEEE Transactions on Industrial Electronics/i, 1997, b44/b(1): 3-13br[245] Liu Chang-Li. Choice for motor of EV drive systems. iAutomotive Technology/i, 1996, (5): 59-62(柳长立. 电动汽车驱动系统的电动机选择. 汽车技术, 1996, (5): 59-62)br[246] Bose B K. iPower Electronics and Variable Frequency Drives: Technology andApplications/i. New York: Wiley-IEEE Press, 1996br[247] Li Yong-Dong. iAC Motor Digital Control System/i. Beijing:China Machine Press, 2003(李永东. 交流电机数字控制系统. 北京: 机械工业出版社, 2003)br[248] Li Hua-De. iAutomatic Control System of Electric Traction/i.Beijing: China Machine Press, 2009(李华德. 电力拖动自动控制系统. 北京: 机械工业出版社, 2009)br[249] Li Chong-Jian. Study of control system for AC drives. iPower Electronics/i, 2004, b2/b(1): 20-23(李崇坚. 交流电机变频调速控制系统的探讨. 电力电子, 2004, b2/b(1):20-23)br[250] Singh B, Jain P, Mittal A P, Gupta J R P. Direct torque control: a practical approach to electric vehicle. In: Proceedings of the 2006 IEEE Power India Conference. New Delhi, India: IEEE, 2006. 842-845br[251] Xu J Q, Ouyang M G, Tang R Y. Study on direct torque control of permanent magnet synchronous motor in electric vehicle drive. In: Proceedings of the 9th IEEE International Workshop on Advanced Motion Control. Istanbul, Turkey: IEEE, 2006. 774-777br[252] Liu X, Ma C B, Li M, Xu M. A kriging assisted direct torque control of brushless DC motor for electric vehicle. In: Proceedings of the 7th International Conference on Natural Computation. Shanghai, China: IEEE, 2011. 1705-1710br[253] Casadei D, Serra G, Tani A. Implementation of a direct control algorithm for induction motors based on discrete space vector modulation. iIEEE Transactions on Power Electronics/i, 2000, b15/b(4): 769-777br[254] He Xin-Jun, Zhang Yue-Qin, Zhang Wen-Xi. Grey-fuzzy controller applied in direct torque control of induction motors. iJournal of Hunan Institute of Engineering/i, 2011, b11/b(3-4): 9-12(何新军, 张跃勤, 张文希. 分段解析灰色模糊控制在直接转矩控制中的应用.湖南工程学院学报(自然科学版), 2011, b11/b(3-4): 9- 12)br[255] Chen Bao-Lin, Hu Yu-Wen. Speed-sensorless direct torque control system of an induction motor. iActa Aeronautica et Astronautica Sinica/i, 2000, b21/b(3): 277-278(陈宝林, 胡育文. 异步电动机的无速度传感器直接转矩控制系统研究.航空学报, 2000, b21/b(3): 277-278)br[256] Dybkowski M, Orlowska-Kowalska T. Application of the stator current-based MRAS speed estimator in the sensorless induction motor drive. In: Proceedings of the 13th International Power Electronics and Motion Control Conference. Poznan, Poland: IEEE, 2008. 2306-2311br[257] He Zhi-Wei, Wang Yong, Xue Feng. Adaptive speed estimation of induction motor and its application in DTC system. iElectric Drive/i, 1999, b3/b(27): 15-26(何志伟, 王勇, 薛峰.感应电动机自适应速度辨识及其在直接转矩控制系统中的应用. 电气传动,1999, b3/b(27): 15-26)br[258] Yusivar F, Uchida K, Haratsu H, Wakao S, Onuki T. Speed adaptive observer for sensorless IM drive using combined reference frames. In: Proceedings of the 15th Annual IEEE Applied Power Electronics Conference and Exposition. New Orleans, USA: IEEE, 2000. 127-132br[259] Shi K L, Chan T F, Wong Y K, Ho S L. Speed estimation of an induction motor drive using an optimized extended Kalman filter. iIEEE Transactions on Industry Electronics/i, 2002, b49/b(1): 124-133br[260] Crus P P, Rivas J J. A small neural network structure application in speed estimation of an induction motor using direct torque control. In: Proceedings of the 32nd IEEE Annual Power Electronics Specialists Conference. Vancouver, Canada: IEEE, 2001. 823-827br[261] Rodic M, Jezernik K, Sabanovic A. Speed sensorless sliding mode torque control of induction motor. In: Proceedings of the 35th IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy. Rome, Italy: IEEE, 2000. 1820-1827br[262] Nakamura E, Soga M, Sakai H A. Development of electronically controlled brake system for hybrid vehicle. In: Proceedings of the 2002 SAE World Congress. Detroit, USA: SAE, 2002. 2002-01-0300br[263] Gao Y M, Ehsani M. Electronic braking system of EV and HEV integration of regenerative braking, automatic braking forces control and ABS. In: Proceedings of the 2001 SAE World Congress. Detroit, USA: SAE, 2001. 2001-01-2478br[264] Ehsani M, Gao Y M, Bulter K L. Application of electrically peaking hybrid (ELPH) propulsion system to a full-size passenger car with simulated design verification. iIEEE Transactions on Vehicular Technology/i, 1999, b48/b(6): 1779-1787br[265] Hakiai M, Taichi T, Shoda M, Koizumi T, Ashikaga T, Shimizu H. Brake system of "Eco-Vehicle". In: Proceedings of the 14th International Electric Vehicle Symposium and Exposition. Orlando, USA: IEVS, 1997br[266] Li Peng. Regenerative Braking Control Strategy Simulation for a Mild HEV [Master dissertation], Tsinghua University, China,2006(李蓬. 轻度混合动力电动汽车制动能量回收控制策略仿真 [硕士学位论文],清华大 学, 中国, 2006)br[267] Cikanek S R, Bailey K E. Regenerative braking system for a hybrid electric vehicle. In: Proceedings of the 2002 American Control of Conference. Anchorage, USA: IEEE, 2002. 3129-3134br[268] Falcone P, Pakazad S K, Solyom S. Predictive approaches to rear axle regenerative braking control in hybrid vehicles. In: Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China: IEEE, 2009. 7627-7632br[269] Zou Ji-Yong. Study on Control Strategy for Electric Vehicle [Ph.,D. dissertation], Tianjin University, China,2007(邹积勇. 电动汽车控制策略研究 [博士学位论文], 天津大学, 中国, 2007)br[270] Peng Dong. Study on Combined Control of Regenerative Braking and Anti-Lock Braking System for Hybrid Electric Vehicle [Ph.,D. dissertation], Shanghai Jiao Tong University, China,2007(彭栋. 混合动力汽车制动能量回收与ABS集成控制研究 [博士学位论文],上海交通 大学, 中国, 2007)br[271] Yu X P, Shen T L, Li G Y, Hikiri K. Regenerative braking torque estimation and control approaches for a hybrid electric truck. In: Proceedings of the 2010 American Control Conference. Baltimore, USA: IEEE, 2010. 5832-5837
  • 加载中
计量
  • 文章访问数:  3835
  • HTML全文浏览量:  125
  • PDF下载量:  4161
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-09
  • 修回日期:  2012-11-26
  • 刊出日期:  2013-04-20

目录

    /

    返回文章
    返回