[1]
|
Haykin S. Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall, 2002[2] Ozeki K, Umeda T. An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties. Electronics and Communication in Japan, 1984, 67(5): 19-27[3] Rupp M. A family of adaptive filter algorithms with decorrelating properties. IEEE Transactions on Signal Processing, 1998, 46(3): 771-775[4] Sankaran S G, Beex A A L. Fast generalized affine projection algorithm. International Journal of Adaptive Control and Signal Processing, 2000, 14(6): 623-641[5] Zhang S, Zhi Y F. Affine projection algorithm using regressive estimated error. ISRN Signal Processing, 2011, doi: 10.5402/2011/180624[6] Chang M S, Kong N W, Park P G. An affine projection algorithm based on reuse time of input vectors. IEEE Transactions on Signal Processing, 2010, 17(8): 750-753[7] Fan Y, Zhang J. Variable step-size affine projection algorithm with exponential smoothing factors. Electronics Letters, 2009, 45(17): 911-912[8] Yin W T, Mehr A S. A variable regularization method for affine projection algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs , 2010, 57(6): 476-480[9] Kim S E, Kong S J, Song W J. An affine projection algorithm with evolving order. IEEE Signal Processing Letters, 2009, 16(11): 937-940[10] Paleologu C, Ciochina S, Benesty J. An efficient proportionate affine projection algorithm for echo cancellation. IEEE Signal Processing Letters, 2010, 17(2): 165-167[11] Sankaran S G, Beex A A L. Convergence behavior of affine projection algorithms. IEEE Transactions on Signal Processing, 2000, 48(4): 1086-1096[12] Paul T K, Ogunfunmi T. On the convergence behavior of the affine projection algorithm for adaptive filters. IEEE Transactions on Circuits and Systems, 2011, 58(8): 1813-1826[13] Rupp M. Pseudo affine projection algorithms revisited: robustness and stability analysis. IEEE Transactions on Signal Processing, 2011, 59(5): 2017-2023[14] De Almeida S J M, Bermudez J C M, Bershad N J, Costa M H. A statistical analysis of the affine projection algorithm for unity step size and autoregressive inputs. IEEE Transactions on Circuits and Systems, 2005, 52(7): 1394-1405[15] De Almeida S J M, Bermudez J C M, Bershad N J. A stochastic model for a pseudo affine projection algorithm. IEEE Transactions on Signal Processing, 2009, 57(1): 107-118 ewpage[16] De Almeida S J M, Costa M H, Bermudez J C M. A stochastic model for the deficient order affine projection algorithm. In: Proceedings of the 10th International Conference on Information Sciences Signal Processing and Their Applications. Kuala Lumpur, Malaysia, USA: IEEE, 2010. 554-557[17] Diniz P S R. Convergence performance of the simplified set-membership affine projection algorithm. Circuits, Systems, and Signal Processing, 2011, 30(2): 439-462[18] Papoulis A. Probability, Random Variables and Stochastic Processes. NewYork: McGraw-Hill, 1965
|