2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于回归估计误差仿射投影算法的统计特性分析

智永锋 李虎雄 李茹

智永锋, 李虎雄, 李茹. 一种基于回归估计误差仿射投影算法的统计特性分析. 自动化学报, 2013, 39(3): 244-250. doi: 10.3724/SP.J.1004.2013.00244
引用本文: 智永锋, 李虎雄, 李茹. 一种基于回归估计误差仿射投影算法的统计特性分析. 自动化学报, 2013, 39(3): 244-250. doi: 10.3724/SP.J.1004.2013.00244
ZHI Yong-Feng, LI Hu-Xiong, LI Ru. Statistical Analysis of Affine Projection Using Regressive Estimated Error Algorithm. ACTA AUTOMATICA SINICA, 2013, 39(3): 244-250. doi: 10.3724/SP.J.1004.2013.00244
Citation: ZHI Yong-Feng, LI Hu-Xiong, LI Ru. Statistical Analysis of Affine Projection Using Regressive Estimated Error Algorithm. ACTA AUTOMATICA SINICA, 2013, 39(3): 244-250. doi: 10.3724/SP.J.1004.2013.00244

一种基于回归估计误差仿射投影算法的统计特性分析

doi: 10.3724/SP.J.1004.2013.00244
详细信息
    通讯作者:

    智永锋

Statistical Analysis of Affine Projection Using Regressive Estimated Error Algorithm

  • 摘要: 输入信号是自回归模型时,建立了一种基于回归估计误差的仿射投影 (Affine projection using regressive estimated error, AP-REE) 算法的统计模型.在五个假设的条件下,推导出了AP-REE算法迭代方向上权值误差和权值均方误差的递归迭代方程, 分析了AP-REE算法稳定状态的误差.仿真结果表明建立的统计模型与AP-REE算法的仿真结果具有一致性.
  • [1] Haykin S. Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall, 2002[2] Ozeki K, Umeda T. An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties. Electronics and Communication in Japan, 1984, 67(5): 19-27[3] Rupp M. A family of adaptive filter algorithms with decorrelating properties. IEEE Transactions on Signal Processing, 1998, 46(3): 771-775[4] Sankaran S G, Beex A A L. Fast generalized affine projection algorithm. International Journal of Adaptive Control and Signal Processing, 2000, 14(6): 623-641[5] Zhang S, Zhi Y F. Affine projection algorithm using regressive estimated error. ISRN Signal Processing, 2011, doi: 10.5402/2011/180624[6] Chang M S, Kong N W, Park P G. An affine projection algorithm based on reuse time of input vectors. IEEE Transactions on Signal Processing, 2010, 17(8): 750-753[7] Fan Y, Zhang J. Variable step-size affine projection algorithm with exponential smoothing factors. Electronics Letters, 2009, 45(17): 911-912[8] Yin W T, Mehr A S. A variable regularization method for affine projection algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs , 2010, 57(6): 476-480[9] Kim S E, Kong S J, Song W J. An affine projection algorithm with evolving order. IEEE Signal Processing Letters, 2009, 16(11): 937-940[10] Paleologu C, Ciochina S, Benesty J. An efficient proportionate affine projection algorithm for echo cancellation. IEEE Signal Processing Letters, 2010, 17(2): 165-167[11] Sankaran S G, Beex A A L. Convergence behavior of affine projection algorithms. IEEE Transactions on Signal Processing, 2000, 48(4): 1086-1096[12] Paul T K, Ogunfunmi T. On the convergence behavior of the affine projection algorithm for adaptive filters. IEEE Transactions on Circuits and Systems, 2011, 58(8): 1813-1826[13] Rupp M. Pseudo affine projection algorithms revisited: robustness and stability analysis. IEEE Transactions on Signal Processing, 2011, 59(5): 2017-2023[14] De Almeida S J M, Bermudez J C M, Bershad N J, Costa M H. A statistical analysis of the affine projection algorithm for unity step size and autoregressive inputs. IEEE Transactions on Circuits and Systems, 2005, 52(7): 1394-1405[15] De Almeida S J M, Bermudez J C M, Bershad N J. A stochastic model for a pseudo affine projection algorithm. IEEE Transactions on Signal Processing, 2009, 57(1): 107-118 ewpage[16] De Almeida S J M, Costa M H, Bermudez J C M. A stochastic model for the deficient order affine projection algorithm. In: Proceedings of the 10th International Conference on Information Sciences Signal Processing and Their Applications. Kuala Lumpur, Malaysia, USA: IEEE, 2010. 554-557[17] Diniz P S R. Convergence performance of the simplified set-membership affine projection algorithm. Circuits, Systems, and Signal Processing, 2011, 30(2): 439-462[18] Papoulis A. Probability, Random Variables and Stochastic Processes. NewYork: McGraw-Hill, 1965
  • 加载中
计量
  • 文章访问数:  1804
  • HTML全文浏览量:  87
  • PDF下载量:  653
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-17
  • 修回日期:  2012-06-07
  • 刊出日期:  2013-03-20

目录

    /

    返回文章
    返回