2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有随机通信时滞的状态估计

杨园华 付敏跃 张焕水

杨园华, 付敏跃, 张焕水. 带有随机通信时滞的状态估计. 自动化学报, 2013, 39(3): 237-243. doi: 10.3724/SP.J.1004.2013.00237
引用本文: 杨园华, 付敏跃, 张焕水. 带有随机通信时滞的状态估计. 自动化学报, 2013, 39(3): 237-243. doi: 10.3724/SP.J.1004.2013.00237
YANG Yuan-Hua, FU Min-Yue, ZHANG Huan-Shui. State Estimation Subject to Random Communication Delays. ACTA AUTOMATICA SINICA, 2013, 39(3): 237-243. doi: 10.3724/SP.J.1004.2013.00237
Citation: YANG Yuan-Hua, FU Min-Yue, ZHANG Huan-Shui. State Estimation Subject to Random Communication Delays. ACTA AUTOMATICA SINICA, 2013, 39(3): 237-243. doi: 10.3724/SP.J.1004.2013.00237

带有随机通信时滞的状态估计

doi: 10.3724/SP.J.1004.2013.00237
详细信息
    通讯作者:

    付敏跃

State Estimation Subject to Random Communication Delays

  • 摘要: 研究了测量值不带时间戳的网络控制系统的最优状态估计问题. 当最大的随机时滞界是一步滞后时, 对可能存在的乱序测量提出新的测量模型. 基于每一时刻收到的所有测量值的平均值构造估计器以保证不稳定网络控制系统的估计器是线性无偏的及估计误差协方差一致有界, 并通过求解离散黎卡提方程得到估计器增益. 在无偏性及误差协方差一致有界的意义下保证估计器是最优的. 最后给出仿真实例验证了该算法的有效性.
  • [1] Hespanha J P, Naghshtabrizi P, Xu Y G. A survey of recent results in networked control systems. Proceedings of the IEEE, 2007, 95(1): 138-162[2] Nilsson J, Bernhardsson B, Wittenmark B. Stochastic analysis and control of real-time systems with random time delays. Automatica, 1998, 34(1): 57-64[3] Sinopoli B, Schenato L, Franceschetti M, Poolla K, Jordan M I, Sastry S S. Kalman filtering with intermittent observations. IEEE Transactions on Automatic Control, 2004, 49(9): 1453-1464[4] Han C Y, Zhang H S. Linear optimal filtering for discrete-time systems with random jump delays. Signal Processing, 2009, 89(6): 1121-1128[5] Cloosterman M B G, Hetel L, van de Wouw N, Heemels W P M H, Daafouz J, Nijmeijer H. Controller synthesis for networked control systems. Automatica, 2010, 46(10): 1584-1594[6] Nahi N. Optimal recursive estimation with uncertain observation. IEEE Transactions on Information Theory, 1969, 15(4): 457-462[7] Wang Z D, Ho D W C, Liu X H. Robust filtering under randomly varying sensor delay with variance constraints. IEEE Transactions on Circuits and Systems, 2004, 51(6): 320-326[8] Zhang H S, Feng G, Han C Y. Linear estimation for random delay systems. Systems and Control Letters, 2011, 60(7): 450-459[9] Chen B, Yu L, Zhang W A. Robust Kalman filtering for uncertain state delay systems with random observation delays and missing measurements. IET Control Theory and Applications, 2011, 5(17): 1945-1954[10] Sun S L, Xie L H, Xiao W D, Soh Y C. Optimal linear estimation for systems with multiple packet dropouts. Automatica, 2008, 44(5): 1333-1342[11] Yaz E, Ray A. Linear unbiased state estimation under randomly varying bounded sensor delay. Applied Mathematics Letters, 1998, 11(4): 27-32[12] Matveev A S, Savkin A V. The problem of state estimation via asynchronous communication channels with irregular transmission times. IEEE Transactions on Automatic Control, 2003, 48(4): 670-676[13] Bai J J, Fu M Y, Su H Y. Delay modeling and estimation of a wireless based network control system. In: Proceedings of the 8th Asian Control Conference. Kaohsiung, China: IEEE, 2011. 187-192[14] Wang Z D, Yang F W, Ho D W, Liu X H. Robust H_∞ filtering for stochastic time-delay systems with missing measurements. IEEE Transactions on Signal Processing, 2006, 54(7): 2579-2587[15] Costa O L V, Guerra S. Stationary filter for linear minimum mean square error estimator of discrete-time Markovian jump systems. IEEE Transactions on Automatic Control, 2002, 47(8): 1351-1356[16] Smith S C, Seiler P. Estimation with lossy measurements: jump estimators for jump systems. IEEE Transactions on Automatic Control, 2003, 48(12): 2163-2171[17] Schenato L. Optimal estimation in networked control systems subject to random delay and packet drop. IEEE Transactions on Automatic Control, 2008, 53(5): 1311-1317[18] Zhang H S, Xie L H. Optimal estimation for systems with time-varying delay. In: Proceedings of the 46th Conference on Decision and Control. New Orleans, LA, USA: IEEE, 2007. 4311-4316[19] Moayedi M, Foo Y K, Soh Y C. Adaptive Kalman filtering in networked systems with random sensor delays, multiple packet dropouts and missing measurements. IEEE Transactions on Signal Processing, 2010, 58(3): 1577-1588[20] Sun S L. Linear minimum variance estimators for systems with bounded random measurement delays and packet dropouts. Signal Processing, 2009, 89(7): 1457-1466[21] Sun S L. Optimal linear estimation for networked systems with one-step random delays and multiple packet dropouts. Acta Automatica Sinica, 2012, 38(3): 349-356[22] Zhou S S, Feng G. H_∞ filtering for discrete-time systems with randomly varying sensor delays. Automatica, 2008, 44(7): 1918-1922[23] Anderson B D O, Moore J B. Optimal Filtering. New Jersey: Prentice-Hall, 1979
  • 加载中
计量
  • 文章访问数:  1781
  • HTML全文浏览量:  30
  • PDF下载量:  674
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-24
  • 修回日期:  2012-12-06
  • 刊出日期:  2013-03-20

目录

    /

    返回文章
    返回