[1]
|
The "Twelfth Five-Year" Development Plan of Nonferrous Industry. Ministry of Industry and Information Technology, December 4, 2011 (有色金属工业"十二五"发展规划. 工业与信息化部, 2011年12月4日)[2] Gui Wei-Hua, Yang Chun-Hua. Intelligent Modeling, Control and Optimization of Complex Nonferrous Metallurgical Process. Beijing: Science Press, 2010(桂卫华, 阳春华. 复杂有色冶金生产过程智能建模、控制与优化. 北京: 科学出版社, 2010)[3] Hodouin D. Methods for automatic control, observation, and optimization in mineral processing plants. Journal of Process Control, 2011, 21(2): 211-225[4] Komulainen T, Pekkala P, Rantala A, Jms-Jounela S L. Dynamic modelling of an industrial copper solvent extraction process. Hydrometallurgy, 2006, 81(1): 52-61[5] Stadler S, Eksteen J J, Aldrich C. Physical modelling of slag foaming in two-phase and three-phase systems in the churn-flow regime. Minerals Engineering, 2006, 19(3): 237-245[6] Wang X L, Yang C H, Gui W H, Wang Y L. Wet grindability of an industrial ore and its breakage parameters estimation using population balances. International Journal of Mineral Processing, 2011, 98(1-2): 113-117[7] Gui W H, Wang Y L, Yang C H. Composition-prediction-model-based intelligent optimisation for lead-zinc sintering blending process. Measurement and Control, 2007, 40(6): 176-181[8] Qiu Zhu-Xian. Nonferrous Metals Metallurgy. Beijing: Metallurgical Industry Press, 1988 (邱竹贤. 有色金属冶金学. 北京: 冶金工业出版社, 1988)[9] Gui Wei-Hua, Yang Chun-Hua, Li Yong-Gang, He Jian-Jun, Yin Lin-Zi. Data-driven operational-pattern optimization for copper flash smelting process. Acta Automatica Sinica, 2009, 35(6): 717-724 (桂卫华, 阳春华, 李勇刚, 贺建军, 尹林子. 基于数据驱动的铜闪速熔炼过程操作模式优化及应用. 自动化学报, 2009, 35(6): 717-724)[10] Hoang H, Couenne F, Jallut C, Le Gorrec Y. The port Hamiltonian approach to modeling and control of continuous stirred tank reactors. Journal of Process Control, 2011, 21(10): 1449-1458[11] Sláva J, Švandová Z, Markoš J. Modelling of reactive separations including fast chemical reactions in CSTR. Chemical Engineering Journal, 2008, 139(3): 517-522[12] Takinoue M, Ma Y, Mori Y, Yoshikawa K. Extended continuous-flow stirred-tank reactor (ECSTR) as a simple model of life under thermodynamically open conditions. Chemical Physics Letters, 2009, 476(4-6): 323-328[13] Wang X L, Yang C H, Gui W H, Young B R, Chen X D. CSTR-based modelling for the continuous carbonation of sodium aluminate solution. The Canadian Journal of Chemical Engineering, 2011, 89(3): 617-624[14] Wang L Y, Gui W H, Teo K L, Loxton R, Yang C H. Time delayed optimal control problems with multiple characteristic time points: computation and industrial applications. Journal of Industrial and Management Optimization, 2009, 5(4): 705-718[15] Araromi D O, Afolabi T J, Aloko D. Neural network control of CSTR for reversible reaction using reverence model approach. Leonardo Journal of Sciences, 2007, 10(1-6): 25-40[16] Attaran S M, Abdullah S S B. Modeling of non isothermal CSTR with the method of RBF NN. In: Proceedings of the 2011 International Conference on Modeling, Simulation and Applied Optimization (ICMSAO). Kuala Lumpur, USA: IEEE, 2011. 1-6[17] Li Y G, Gui W H, Teo K L, Zhu H Q, Chai Q Q. Optimal control for zinc solution purification based on interacting CSTR models. Journal of Process Control, 2012, 22(10): 1878-1889[18] Babuška R, Verbruggen H B, van Can H J L. Fuzzy modeling of enzymatic penicillin-G conversion. Engineering Applications of Artificial Intelligence, 1999, 12(1): 79-92[19] Liau L C K, Yang T C K, Tsai M T. Expert system of a crude oil distillation unit for process optimization using neural networks. Expert Systems with Applications, 2004, 26(2): 247-255[20] Yang C H, Deconinck G, Gui W H, Li Y G. An optimal power-dispatching system using neural networks for the electrochemical process of zinc depending on varying prices of electricity. IEEE Transactions on Neural Networks, 2002, 13(1): 229-236[21] Chai T Y, Zhai L F, Yue H. Multiple models and neural networks based decoupling control of ball mill coal-pulverizing systems. Journal of Process Control, 2011, 21(3): 351-366[22] Qiao J H, Chai T Y. Soft measurement model and its application in raw meal calcination process. Journal of Process Control, 2012, 22(1): 344-351[23] Zhang S N, Wang F L, He D K, Jia R D. Real-time product quality control for batch processes based on stacked least-squares support vector regression models. Computers and Chemical Engineering, 2012, 36: 217-226[24] Zhao C H, Wang F L, Lu N Y, Jia M X. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes. Journal of Process Control, 2007, 17(9): 728-741[25] Chang Yu-Qing, Wang Xiao-Gang, Wang Fu-Li. Multi neural network method for soft sensing and its application. Journal of Northeastern University, 2005, 26(6): 519-522 (常玉清, 王小刚, 王福利. 基于多神经网络模型的软测量方法及应用. 东北大学学报, 2005, 26(6): 519-522)[26] Fu Y, Chai T Y. Nonlinear multivariable adaptive control using multiple models and neural networks. Automatica, 2007, 43(6): 1101-1110[27] Yang Chun-Hua, Xie Ming, Gui Wei-Hua, Peng Xiao-Bo. A prediction model for matte grade in copper flash smelting process. Information and Control, 2008, 37(1): 28-33 (阳春华, 谢明, 桂卫华, 彭晓波. 铜闪速熔炼过程冰铜品位预测模型的研究与应用. 信息与控制, 2008, 37(1): 28-33)[28] Gui W H, Wang L Y, Yang C H, Xie Y F, Peng X B. Intelligent prediction model of matte grade in copper flash smelting process. Transactions of Nonferrous Metals Society of China, 2007, 17(5): 1075-1081[29] Yan Ai-Jun, Chai Tian-You, Yue Heng. Multivariable intelligent optimizing control approach for shaft furnace roasting process. Acta Automatica Sinica, 2006, 32(4): 636-640 (严爱军, 柴天佑, 岳恒. 竖炉焙烧过程的多变量智能优化控制. 自动化学报, 2006, 32(4): 636-640)[30] Wang Ya-Lin, Gui Wei-Hua, Yang Chun-Hua, Xie Yong-Fang, Song Hai-Ying. Intelligent integrated modeling for the dynamic copper-converting process based on limited data information. Control Theory and Applications, 2009, 26(8): 860-866 (王雅琳, 桂卫华, 阳春华, 谢永芳, 宋海鹰. 基于有限信息的铜吹炼动态过程智能集成建模. 控制理论与应用, 2009, 26(8): 860-866)[31] Zhang Shu-Ning, Wang Fu-Li, You Fu-Qiang, He Da-Kuo. On the hybrid modeling method of cobalt oxalate grain size distribution in hydrometallurgy synthesis process. Journal of Northeastern University (Natural Science), 2010, 31(1): 8-11 (张淑宁, 王福利, 尤富强, 何大阔. 湿法冶金草酸钴粒度分布混合建模方法. 东北大学学报(自然科学版), 2010, 31(1): 8-11)[32] Yang C H, Gui W H, Kong L S, Wang Y L. Modeling and optimal-setting control of blending process in a metallurgical industry. Computers and Chemical Engineering, 2009, 33(7): 1289-1297[33] Peng Xiao-Bo, Gui Wei-Hua, Li Yong-Gang, Wang Ling Yun, Chen Yong. Copper flash smelting parameter soft sensor based on dynamic T-S recurrent fuzzy neural network. Chinese Journal of Scientific Instrument, 2008, 29(10): 2029-2033 (彭晓波, 桂卫华, 李勇刚, 王凌云, 陈勇. 基于动态T-S递归模糊神经网络的闪速熔炼过程参数软测量. 仪器仪表学报, 2008, 29(10): 2029-2033)[34] Zhou X J, Yang C H, Gui W H. State transition algorithm. Journal of Industrial and Management Optimization, 2012, 8(4): 1039-1056[35] Chai Q Q, Yang C H, Teo K L, Gui W H. Optimal control of an industrial-scale evaporation process: sodium aluminate solution. Control Engineering Practice, 2012, 20(6): 618-628[36] Nascimento C A O, Giudici R, Guardani R. Neural network based approach for optimization of industrial chemical processes. Computers and Chemical Engineering, 2002, 24(9-10): 2303-2314[37] Liu P, Su J H, Dong Q M, Li H J. Optimization of aging treatment in lead frame copper alloy by intelligent technique. Materials Letters, 2005, 59(26): 3337-3342[38] Chen X F, Gui W H, Wang Y L, Cen L H. Multi-step optimal control of complex process: a genetic programming strategy and its application. Engineering Applications of Artificial Intelligence, 2004, 17(5): 491-500[39] Wu Yong-Jian, Zhang Li, Yue Heng, Chai Tian-You. Intelligent optimal control based on CBR for fused magnesia production. Journal of Chemical Industry and Engineering (China), 2008, 59(7): 1686-1690 (吴永建, 张莉, 岳恒, 柴天佑. 基于案例推理的电熔镁炉智能优化控制. 化工学报, 2008, 59(7): 1686-1690)[40] Geng Zeng-Xian, Chai Tian-You. Intelligently optimal index setting for flotation process by CBR. Journal of Northeastern University (Natural Science), 2008, 29(6): 761-764 (耿增显, 柴天佑. 基于案例推理的浮选过程智能优化设定. 东北大学学报(自然科学版), 2008, 29(6): 761-764)[41] Zhou P, Chai T Y, Wang H. Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE Transactions on Automation Science and Engineering, 2009, 6(4): 730-743[42] Chai T Y, Ding J L, Wu F H. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Engineering Practice, 2011, 19(3): 264-275[43] Wang Z J, Wu Q D, Chai T Y. Optimal-setting control for complicated industrial processes and its application study. Control Engineering Practice, 2004, 12(1): 65-74[44] Chai Tian-You. Challenges of optimal control for plant-wide production processes in terms of control and optimization theories. Acta Automatica Sinica, 2009, 35(6): 641-649 (柴天佑. 生产制造全流程优化控制对控制与优化理论方法的挑战. 自动化学报, 2009, 35(6): 641-649)[45] Yang Chun-Hua, Wang Xiao-Li, Tao Jie, Gui Wei-Hua, Wang Ya-Lin. Modeling and intelligent optimization algorithm for burden process of copper flash smelting. Journal of System Simulation, 2008, 20(8): 2152-2155 (阳春华, 王晓丽, 陶杰, 桂卫华, 王雅琳. 铜闪速熔炼配料过程建模与智能优化方法研究. 系统仿真学报, 2008, 20(8): 2152-2155)[46] Yang C H, Gui W H, Kong L S, Wang Y L. A two-stage intelligent optimization system for the raw slurry preparing process of alumina sintering production. Engineering Applications of Artificial Intelligence, 2009, 22(4-5): 786-795
|