2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模拟初级视皮层脉冲神经元的动作识别系统

黄丽鸿 谌先敢 刘海华

黄丽鸿, 谌先敢, 刘海华. 模拟初级视皮层脉冲神经元的动作识别系统. 自动化学报, 2012, 38(12): 1975-1984. doi: 10.3724/SP.J.1004.2012.01975
引用本文: 黄丽鸿, 谌先敢, 刘海华. 模拟初级视皮层脉冲神经元的动作识别系统. 自动化学报, 2012, 38(12): 1975-1984. doi: 10.3724/SP.J.1004.2012.01975
HUANG Li-Hong, CHEN Xian-Gan, LIU Hai-Hua. Action Recognition System with Analog Model of Neurons in Primate Visual Cortex. ACTA AUTOMATICA SINICA, 2012, 38(12): 1975-1984. doi: 10.3724/SP.J.1004.2012.01975
Citation: HUANG Li-Hong, CHEN Xian-Gan, LIU Hai-Hua. Action Recognition System with Analog Model of Neurons in Primate Visual Cortex. ACTA AUTOMATICA SINICA, 2012, 38(12): 1975-1984. doi: 10.3724/SP.J.1004.2012.01975

模拟初级视皮层脉冲神经元的动作识别系统

doi: 10.3724/SP.J.1004.2012.01975
详细信息
    通讯作者:

    刘海华

Action Recognition System with Analog Model of Neurons in Primate Visual Cortex

  • 摘要: 大脑中致力于运动信息处理的区域是初级视皮层(V1)和中颞区(MT).目前有关运动模式是在哪个区域完成的,存在不同的推测.迄今大多数关于动作识别的研究都是围绕MT阶段展开的.本文针对V1阶段获得的信息能否进行动作识别的问题展开研究,提出了模拟初级视皮层(V1)脉冲神经元的动作识别系统.该系统首先采用3D Gabor滤波器及其组合分别模拟初级视觉皮层中简单、复杂细胞的感受野,以此对视频图像进行处理,从而获取对运动速度和方向敏感的运动能量,并通过V1阶段的环绕抑制来增强运动能量和降低噪声的影响.其次,采用Integrate-and-fire脉冲神经元模型模拟初级视觉皮层的神经元,将获取的运动信息转换为神经元响应的脉冲链.最后,根据脉冲链平均发放率的特性提取运动特征向量,采用支持向量机(Support vector machine, SVM)作为分类器.在Weiziman数据库下进行测试,实验结果表明, V1阶段获得的信息可以进行动作的识别.
  • [1] Chen Xian-Gan, Liu Juan, Gao Zhi-Yong, Liu Hai-Hua. Recognizing realistic human actions using accumulative edge image. Acta Automatica Sinica, 2012, 38(8): 1380-1384(谌先敢, 刘娟, 高智勇, 刘海华. 基于累积边缘图像的现实人体动作识别. 自动化学报, 2012, 38(8): 1380-1384)[2] Huang Fei-Yue, Xu Guang-You. Viewpoint independent action recognition. Journal of Software, 2008, 19(1): 1623-1643(黄飞跃, 徐光祐. 视角无关的动作识别. 软件学报, 2008, 19(1): 1623-1643)[3] Gu Jun-Xia, Ding Xiao-Qing, Wang Sheng-Jin. Human 3D model-based 2D action recognition. Acta Automatica Sinica, 2010, 36(1): 46-53(谷军霞, 丁晓青, 王生进. 基于人体行为3D模型的2D行为识别. 自动化学报, 2010, 36(1): 46-53)[4] Luo Si-Wei. The Percetion Computing of Visual Information. Beijing: Science Press, 2010(罗四维. 视觉信息认知计算理论. 北京: 科学出版社, 2010)[5] Casile A, Giese M. Roles of motion and form in biological motion recognition. In: Proceedings of the 2003 Joint International Conference on Artificial Networks and Neural Information Processing. Berlin, Heidelberg: Springer-Verlag 2003. 854-862[6] Mingolla E, Todd J T, Normal J F. The perception of globally coherent motion. Vision Research, 1992, 32(6): 1015-1031[7] Simoncelli E P, Heeger D J. A model of neuronal responses in visual area MT. Vision Research, 1998, 38(5): 743-761[8] Bayerl P, Neumann H. Disambiguating visual motion through contextual feedback modulation. Neural Computation, 2004, 16(10): 2041-2066[9] Bayerl P, Neumann H. A fast biologically inspired algorithm for recurrent motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 246-260[10] Jhuang H, Serre T, Wolf L, Poggio T. A biologically inspired system for action recognition. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8[11] Thorpe S. Spike arrival times: a highly efficient coding scheme for neural networks. Parallel Processing in Neural Systems and Computers. New York: North-Holland, 1990. 91-94[12] Thorpe S, Fize D, Marlot C. Speed of processing in the human visual system. Nature, 1996, 381(6582): 520-522[13] Escobar M J, Masson G S, Vieville T, Kornprobst P. Action recognition using a bio-inspired feedforward spiking network. International Journal of Computer Vision, 2009, 82(3): 284-301[14] Escobar M J, Kornprobst P. Action recognition with a bio-inspired feedforward motion processing model. In: Proceedings of the 10th European Conference on Computer Vision. Berlin, Heidelberg: Springer-Verlag, 2008. 186-199[15] Knierim J J, van Essen D C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology, 1992, 67(4): 961-980[16] Petkov N, Westenberg M A. Suppression of contour perception by band-limited noise and its relation to nonclassical receptive field inhibition. Biological Cybernetics, 2003, 88(3): 236-246[17] Petkov N, Subramanian E. Motion detection, noise reduction, texture suppression, and contour enhancement by spatiotemporal Gabor filters with surround inhibition. Biological Cybernetics, 2007, 97(5): 423-439[18] Allman J M, Miezin F M, McGuinness E. Direction and velocity specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception, 1985, 14(2): 105-126[19] Rayner K. Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 1998, 124(3): 372-422[20] Itti L., Koch C., Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259[21] Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, 1962, 160(1): 106-154[22] Liu H C, Hong T H, Herman M, Chellappa R. A general motion model and spatio-temporal filters for computing optical flow. International Journal of Computer Vision, 1997, 22(2): 141-172[23] Adelson E H, Bergen J R. Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America, 1985, 2(2): 284-299[24] Jones H E, Grieve K L, Wang W, Silito A M. Surround suppression in primate V1. Journal of Neurophysiology, 2001, 86(4): 2011-2028[25] DeAngelis G C, Uka T. Coding of horizontal disparity and velocity by MT neurons in the alert macaque. Journal of Neurophysiology, 2003, 89(2): 1094-1111[26] Gerstner W, Kistler W M. Spiking Neuron Models. Cambridge: Cambridge University Press, 2002[27] Wielaard D J, Shelley M, McLaughlin D, Shapley R. How simple cells are made in a nonlinear network model of the visual cortex. Journal of Neuroscience, 2001, 21(14): 5203-5211[28] Lestienne R. Determination of the precision of spike timing in the visual cortex of anaesthetised cats. Biological Cybernetics, 1996, 74(1): 55-61[29] Victor J D, Purpura K P. Nature and precision of temporal coding in visual cortex: a metric-space analysis. Journal of Neurophysiology, 1996, 76(2): 1310-1326[30] Rieke F, Warland D. Spikes: Exploring the Neural Code. Cambridge: Bradford Books, 1997[31] Fellous J M, Tiesinga P H E, Thomas P J, Sejnowski T J. Discovering spike patterns in neuronal responses. Journal of Neuroscience, 2004, 24(12): 2989-3001[32] Cessac B, Paugam-Moisy H, Viéville T. Overview of facts and issues about neural coding by spikes. Journal of Physiology-Paris, 2010, 104(1-2): 5-18[33] Sahebsara M, Chen T, Shah S L. Optimal H2-filtering with random sensor delay, multiple packet dropout and uncertain observations. International Journal of Control, 2007, 80(2): 292-301
  • 加载中
计量
  • 文章访问数:  1410
  • HTML全文浏览量:  40
  • PDF下载量:  644
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-10
  • 修回日期:  2012-08-14
  • 刊出日期:  2012-12-20

目录

    /

    返回文章
    返回