2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DNA甲基化微阵列的非参数贝叶斯聚类算法

张林 刘辉

张林, 刘辉. DNA甲基化微阵列的非参数贝叶斯聚类算法. 自动化学报, 2012, 38(10): 1709-1713. doi: 10.3724/SP.J.1004.2012.01709
引用本文: 张林, 刘辉. DNA甲基化微阵列的非参数贝叶斯聚类算法. 自动化学报, 2012, 38(10): 1709-1713. doi: 10.3724/SP.J.1004.2012.01709
ZHANG Lin, LIU Hui. Nonparametric Bayesian Clustering Methods of DNA Methylation Microarray. ACTA AUTOMATICA SINICA, 2012, 38(10): 1709-1713. doi: 10.3724/SP.J.1004.2012.01709
Citation: ZHANG Lin, LIU Hui. Nonparametric Bayesian Clustering Methods of DNA Methylation Microarray. ACTA AUTOMATICA SINICA, 2012, 38(10): 1709-1713. doi: 10.3724/SP.J.1004.2012.01709

DNA甲基化微阵列的非参数贝叶斯聚类算法

doi: 10.3724/SP.J.1004.2012.01709
详细信息
    通讯作者:

    张林

Nonparametric Bayesian Clustering Methods of DNA Methylation Microarray

  • 摘要: 面向 Illumina GoldenGate 甲基化微阵列数据提出了一种基于模型的聚类算法. 算法通过建立贝塔无限混合模型, 采用 Dirichlet 过程作为先验, 实现了基于数据和模型的聚类结构的建立, 实验结果表明该算法能够有效估计出聚类类别个数、 每个聚类类别的混合权重、每个聚类类别的特征等信息, 达到比较理想的聚类效果.
  • [1] Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. Journal of Molecular Biology, 1987, 196(2): 261-282[2] Fan Shi-Cai, Zhang Xue-Gong. Progress of bioinformatics study in DNA methylation. Progress of Biochemistry and Biophysics, 2009, 36(2): 143-150 (凡时财, 张学工. DNA 甲基化的生物信息学研究进展. 生物化学与生物物理进展, 2009, 36(2): 143-150)[3] Jones P A, Baylin S B. The fundamental role of epigenetic events in cancer. Nature Reviews Genetics, 2002, 3(6): 415-428[4] Ang P W, Li W Q, Soong R, Lacopetta B. BRAF mutation is associated with the CpG island methylator phenotype in colorectal cancer from young patients. Cancer Letters, 2009, 273(2): 221-224[5] Siegmund K D, Laird P W, Laird-Offringa I A. A comparison of cluster analysis methods using DNA methylation data. Bioinformatics, 2004, 20(12): 1896-1904[6] Houseman E A, Christensen B C, Yeh R F, Marsit C J, Karagas M R, Wrensch M, Nelson H H, Wiemels J, Zheng S C, Wiencke J K, Kelsey K T. Model-based clustering of DNA methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions. BMC Bioinformatics, 2008, 9(1): 365[7] Zhang Lin, Liu Hui. A Clustering method based on Dirichlet process mixture model. Journal of China University of Mining Technology, 2012, 41(1): 159-163 (张林, 刘辉. Dirichlet过程混合模型的聚类算法. 中国矿业大学学报, 2012, 41(1): 159-163)[8] Zhou Jian-Ying, Wang Fei-Yue, Zeng Da-Jun. Hierarchical Dirichlet processes and their applications: a survey. Acta Automatic Sinica, 2011, 37(4): 389-407 (周建英, 王飞跃, 曾大军. 分层Dirichlet过程及其应用综述. 自动化学报, 2011, 37(4): 389-407)[9] Bouguila N, Ziou D. A Dirichlet process mixture of generalized Dirichlet distributions for proportional data modeling. IEEE Transactions on Neural Networks, 2010, 21(1): 107-122[10] Kuan P F, Wang S J, Zhou X, Chu H T. A statistical framework for Illumina DNA methylation arrays. Bioinformatics, 2010, 26(22): 2849-2855[11] Escobar M D, West M. Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 1995, 90(430): 577-588[12] Pitman Jim. Some developments of the Blackwell-MacQueen urn scheme. Lecture Notes-Monograph Series, 1996, 30: 245-267[13] MacEachern S N, Müller P. Estimating mixture of Dirichlet process models. Journal of Computational and Graphical Statistics, 1998, 7(2): 223-238[14] Gelman A, Carlin J B, Stern H S, Rubin D B. Bayesian Data Analysis (Second edition). Boca Raton: CRC press, 2004[15] Amigó E, Gonzalo J, Artiles J, Verdejo F. A comparison of extrinsic clustering evaluation metrics based on formal constraints. Information Retrieval, 2009, 12(4): 461-486
  • 加载中
计量
  • 文章访问数:  1882
  • HTML全文浏览量:  84
  • PDF下载量:  1517
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-22
  • 修回日期:  2012-03-28
  • 刊出日期:  2012-10-20

目录

    /

    返回文章
    返回