[1]
|
Zhang Su-Lan, Guo Ping, Zhang Ji-Fu, Hu Li-Hua. Automatic semantic image annotation with granular analysis method. Acta Automatica Sinica, 2012, 38(5): 688-697(张素兰, 郭平, 张继福, 胡立华. 图像语义自动标注及其粒度分析方法. 自动化学报, 2012, 38(5): 688-697)[2] Li Wen-Qing, Sun Xin, Zhang Chang-You, Feng Ye. A semantic similarity measure between ontological concepts. Acta Automatica Sinica, 2012, 38(2): 229-235(李文清, 孙新, 张常有, 冯烨. 一种本体概念的语义相似度计算方法. 自动化学报, 2012, 38(2): 229-235)[3] Damoulas T, Girolami M A. Pattern recognition with a Bayesian kernel combination machine. Pattern Recognition Letters, 2009, 30(1): 46-54[4] Vedaldi A, Gulshan V, Varma M, Zisserman A. Multiple kernels for object detection. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE. 2009, 606-613[5] Yang J J, Li Y N, Tian Y H, Duan L Y, Gao W. Per-sample multiple kernel approach for visual concept learning. Journal on Image and Video Processing. 2010, 2010(2): 220-232[6] Bach F R, Lanckriet G R, Jordan M I. Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the 21st IEEE International Conference on Machine Learning. New York, USA: ACM, 2004. 41-48[7] Varma M, Ray D. Learning the discriminative power-invariance trade-off. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE. 2007. 1-8[8] Kumar A, Sminchisescu C. Support kernel machines for object recognition. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8[9] Schólkopf B, Burges C J C, Smola A J. Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1998. 185-208[10] Wang Hong-Qiao, Sun Fu-Chun, Cai Yan-Ning, Chen Ning, Ding Lin-Ge. On multiple kernel learning methods. Acta Automatica Sinica. 2010, 36(8): 1037-1050(汪洪桥, 孙富春, 蔡艳宁, 陈宁, 丁林阁. 多核学习方法. 自动化学报, 2010, 36(8): 1037-1050)[11] Li J B, Sun S L. Nonlinear combination of multiple kernels for support vector machines. In: Proceedings of the 20th IEEE International Conference on Pattern Recognition. Istanbul, Turkey: IEEE, 2010. 2889-2892[12] Cortes C, Mohri M, Rostamizadeh A. Learning non-linear combinations of kernels. In: Proceedings of the 33rd IEEE Annual Conference on Neural Information Processing Systems. New York, USA: IEEE. 2009. 396-404[13] Lin Y Y, Liu T L, Fuh C S. Local ensemble kernel learning for object category recognition. In: Proceedings of the 17th IEEE International Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA: IEEE. 2007. 1-8[14] Malisiewicz T, Efros A A. Recognition by association via learning per-exemplar distances. In: Proceedings of the 18th IEEE International Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA: IEEE. 2008. 1-8[15] Yang J J, Li Y N, Tian Y H, Duan L Y, Gao W. Group-sensitive multiple kernel learning for object categorization. In: Proceedings of the 19th IEEE International Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE. 2009. 436-443[16] van Gemert J, Snoek C G M, Veenman C J, Smeulders A W M, Geusebroek J M. Comparing compact codebooks for visual categorization. Computer Vision and Image Understanding, 2010, 114(4): 450-462[17] Zhang Xue-Feng, Zhang Gui-Zhen, Liu Peng. Improved k-means algorithm based on clustering criterion function. Computer Engineering and Applications, 2011, 47(11): 123-127(张雪凤, 张桂珍, 刘鹏. 基于聚类准则函数的改进K-means算法. 计算机工程与应用, 2011, 47(11): 123-127)[18] Datar M, Immorlica N, Indyk P, Mirrokni V S. Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings the 20th of Annual Symposium on Computational Geometry. New York, USA: ACM, 2004. 253-262[19] Gionis A, Indyk P, Motwani R. Similarity search in high dimensions via hashing. In: Proceedings of the 25th International Conference on Very Large Data Bases. New York, USA: ACM, 1999. 518-529[20] Sonnenburg S, Rtsch G, Schfer C, Schlkopf B. Large scale multiple kernel learning. Journal of Machine Learning Research, 2006, 7(7): 1531-1565[21] Yang J J, Li Y N, Tian Y H, Duan L Y, Gao W. A new multiple kernel approach for visual concept learning. In: Proceedings of the 15th International Multimedia Modeling Conference on Advances in Multimedia. Berlin, Germany: Springer-Verlag, 2009. 250-262[22] Hettich R, Kortanek K O. Semi-infinite programming: theory, methods, and applications. SIAM Review, 1993, 35(3): 380-429[23] Naphade M, Kennedy L, Kender J R, Chang S F, Over P, Hauptmann A. LSCOM-Lite: A Light Scale Concept Ontology for Multimedia Understanding for TRECVID 2005. IBM Research Technology Report, RC23612 (W0505-104). New York, USA, 2005[24] Natsev A, Naphade M R, Tesić J. Learning the semantics of multimedia queries and concepts from a small number of examples. In: Proceedings of the 13th ACM International Conference on Multimedia Modeling. New York, USA: ACM, 2005. 598-607[25] Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110[26] Jia Shi-Jie, Kong Xiang-Wei. A new histogram-based kernel function designed for image classification. Journal of Electronics Information Technology, 2011, 33(7): 1738-1742(贾世杰, 孔祥维. 一种新的直方图核函数及在图像分类中的应用. 电子与信息学报, 2011, 33(7): 1738-1742)[27] Marszalek M, Schmid C, Harzallah H, Van de Weijer J. Learning object representations for visual object class recognition. Computer and Information Science, 2007, 8(1): 93-111
|