[1]
|
Müller D J, Dufrene Y F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nature Nanotechnology, 2008, 3(5): 261-269[2] Cross S E, Jin Y S, Rao J Y, Gimzewski J K. Nanomechanical analysis of cells from cancer patients. Nature Nanotechnology, 2007, 2(12): 780-783[3] Li Q S, Lee G Y H, Ong C N, Lim C T. AFM indentation study of breast cancer cells. Biochemical and Biophysical Research Communications, 2008, 374(4): 609-613[4] Wu H W, Kuhn T, Moy V T. Mechanical properties of l929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning, 1998, 20(5): 389-397[5] Li M, Liu L Q, Xi N, Wang Y C, Dong Z L, Tabata O, Xaio X B, Zhang W J. Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy. Biochemical and Biophysical Research Communications, 2011, 404(2): 689-694[6] Lee G Y H, Lim C T. Biomechanics approaches to studying human diseases. Trends in Biotechnology, 2007, 25(3): 111-118[7] Neuman K C, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 2008, 5(6): 491-505[8] Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz A Z. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. European Biophysics Journal, 1999, 28(4): 312-316[9] Yim E K F, Darling E M, Kulangara K, Guilak F, Leong K W. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials, 2010, 31(6): 1299-1306[10] Cai X F, Yang X X, Cai J Y, Wu S X, Chen Q. X. Atomic force microscope-related study membrane-associated cytotoxicity in human pterygium fibroblasts induced by mitomycin C. The Journal of Physical Chemistry B, 2010, 114(11): 3833-3839[11] Katan A J, Dekker C. High-speed AFM reveals the dynamics of single biomolecules at the nanometer scale. Cell, 2011, 147(5): 979-982[12] Li Mi, Liu Lian Qing, Xi Ning, Wang Yue-Chao, Dong Zai-Li, Xiao Xiu-Bin, Zhang Wei-Jing. Imaging and measuring the mechanical properties of lymphoma cells using atomic force microscopy. Chinese Science Bulletin, 2010, 55(22): 2188-2196(李密, 刘连庆, 席宁, 王越超, 董再励, 肖秀斌, 张伟京. 基于AFM的淋巴瘤细胞成像及其机械特性测定. 科学通报, 2010, 55(22): 2188-2196)[13] Fernandes A N, Chen X Y, Scotchford C A, Walker J, Wells D M, Roberts C J, Everitt N M. Mechanical properties of epidermal cells of whole living roots of Arabidopsis thaliana: an atomic force microscopy study. Physical Review E, 2012, 85(2): id.021916[14] Saha R, Nix W D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia, 2002, 50(1): 23-38[15] Chen H P, Xi N, Li G Y. CAD-guided automated nanoassembly using atomic force microscopy-based nonrobotics. IEEE Transactions on Automation Science and Engineering, 2006, 3(3): 208-217[16] Ioannou D, Huda W, Laine A F. Circle recognition through a 2D hough transform and radius histogramming. Image Vision Computing, 1997, 17(1): 15-26[17] Liu L Q, Luo Y L, Xi N, Wang Y C, Zhang J B, Li G Y. Sensor referenced real-time videolization of atomic force microscopy for nanomanipulations. IEEE/ASME Transactions on Mechatronics, 2008, 13(1): 76-85
|