2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速自动化细胞机械特性测量系统

王智博 刘连庆 王越超 席宁 董再励 黄树涛

王智博, 刘连庆, 王越超, 席宁, 董再励, 黄树涛. 高速自动化细胞机械特性测量系统. 自动化学报, 2012, 38(10): 1639-1645. doi: 10.3724/SP.J.1004.2012.01639
引用本文: 王智博, 刘连庆, 王越超, 席宁, 董再励, 黄树涛. 高速自动化细胞机械特性测量系统. 自动化学报, 2012, 38(10): 1639-1645. doi: 10.3724/SP.J.1004.2012.01639
WANG Zhi-Bo, LIU Lian-Qing, WANG Yue-Chao, XI Ning, DONG Zai-Li, HUANG Shu-Tao. A High-speed Automatic System for Measuring the Mechanical Properties of Cells. ACTA AUTOMATICA SINICA, 2012, 38(10): 1639-1645. doi: 10.3724/SP.J.1004.2012.01639
Citation: WANG Zhi-Bo, LIU Lian-Qing, WANG Yue-Chao, XI Ning, DONG Zai-Li, HUANG Shu-Tao. A High-speed Automatic System for Measuring the Mechanical Properties of Cells. ACTA AUTOMATICA SINICA, 2012, 38(10): 1639-1645. doi: 10.3724/SP.J.1004.2012.01639

高速自动化细胞机械特性测量系统

doi: 10.3724/SP.J.1004.2012.01639
详细信息
    通讯作者:

    刘连庆

A High-speed Automatic System for Measuring the Mechanical Properties of Cells

  • 摘要: 细胞机械特性作为一种无标签(Label-free) 的生物标记,正得到越来越多的关注. 然而现有进行细胞机械特性测量的方法多以手工模式进行,耗时长、效率低下, 无法满足生物学统计分析对大批量样品测试的要求. 针对该问题,本文在原子力显微镜(Atomic force microscopy, AFM)基础上,建立了一套高速自动化的细胞机械特性测量系统. 该系统利用图像处理方法来识别细胞,利用局部扫描来实现AFM针尖和细胞相对位置的精确标定,进而不需要AFM成像就能实 现细胞机械特性的连续测定, 配合上程序化控制的运动载物平台,可以高速自动化完成大范围区域内细胞机械特性的批量规模化测量. 实验结果表明,该系统可以使得细胞机械特性的测量效率提高27倍,从而为Label-free生物标记的批量化测试提供了技术支撑.
  • [1] Müller D J, Dufrene Y F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nature Nanotechnology, 2008, 3(5): 261-269[2] Cross S E, Jin Y S, Rao J Y, Gimzewski J K. Nanomechanical analysis of cells from cancer patients. Nature Nanotechnology, 2007, 2(12): 780-783[3] Li Q S, Lee G Y H, Ong C N, Lim C T. AFM indentation study of breast cancer cells. Biochemical and Biophysical Research Communications, 2008, 374(4): 609-613[4] Wu H W, Kuhn T, Moy V T. Mechanical properties of l929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning, 1998, 20(5): 389-397[5] Li M, Liu L Q, Xi N, Wang Y C, Dong Z L, Tabata O, Xaio X B, Zhang W J. Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy. Biochemical and Biophysical Research Communications, 2011, 404(2): 689-694[6] Lee G Y H, Lim C T. Biomechanics approaches to studying human diseases. Trends in Biotechnology, 2007, 25(3): 111-118[7] Neuman K C, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 2008, 5(6): 491-505[8] Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz A Z. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. European Biophysics Journal, 1999, 28(4): 312-316[9] Yim E K F, Darling E M, Kulangara K, Guilak F, Leong K W. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials, 2010, 31(6): 1299-1306[10] Cai X F, Yang X X, Cai J Y, Wu S X, Chen Q. X. Atomic force microscope-related study membrane-associated cytotoxicity in human pterygium fibroblasts induced by mitomycin C. The Journal of Physical Chemistry B, 2010, 114(11): 3833-3839[11] Katan A J, Dekker C. High-speed AFM reveals the dynamics of single biomolecules at the nanometer scale. Cell, 2011, 147(5): 979-982[12] Li Mi, Liu Lian Qing, Xi Ning, Wang Yue-Chao, Dong Zai-Li, Xiao Xiu-Bin, Zhang Wei-Jing. Imaging and measuring the mechanical properties of lymphoma cells using atomic force microscopy. Chinese Science Bulletin, 2010, 55(22): 2188-2196(李密, 刘连庆, 席宁, 王越超, 董再励, 肖秀斌, 张伟京. 基于AFM的淋巴瘤细胞成像及其机械特性测定. 科学通报, 2010, 55(22): 2188-2196)[13] Fernandes A N, Chen X Y, Scotchford C A, Walker J, Wells D M, Roberts C J, Everitt N M. Mechanical properties of epidermal cells of whole living roots of Arabidopsis thaliana: an atomic force microscopy study. Physical Review E, 2012, 85(2): id.021916[14] Saha R, Nix W D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia, 2002, 50(1): 23-38[15] Chen H P, Xi N, Li G Y. CAD-guided automated nanoassembly using atomic force microscopy-based nonrobotics. IEEE Transactions on Automation Science and Engineering, 2006, 3(3): 208-217[16] Ioannou D, Huda W, Laine A F. Circle recognition through a 2D hough transform and radius histogramming. Image Vision Computing, 1997, 17(1): 15-26[17] Liu L Q, Luo Y L, Xi N, Wang Y C, Zhang J B, Li G Y. Sensor referenced real-time videolization of atomic force microscopy for nanomanipulations. IEEE/ASME Transactions on Mechatronics, 2008, 13(1): 76-85
  • 加载中
计量
  • 文章访问数:  2007
  • HTML全文浏览量:  75
  • PDF下载量:  900
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-03
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-10-20

目录

    /

    返回文章
    返回