2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自组织状态空间模型参数初始分布搜索算法

甘敏 彭辉 黄云志 董学平

甘敏, 彭辉, 黄云志, 董学平. 自组织状态空间模型参数初始分布搜索算法. 自动化学报, 2012, 38(9): 1538-1543. doi: 10.3724/SP.J.1004.2012.01538
引用本文: 甘敏, 彭辉, 黄云志, 董学平. 自组织状态空间模型参数初始分布搜索算法. 自动化学报, 2012, 38(9): 1538-1543. doi: 10.3724/SP.J.1004.2012.01538
GAN Min, PENG Hui, HUANG Yun-Zhi, DONG Xue-Ping. Initial Distribution Search Algorithm for Self-organizing State Space Model. ACTA AUTOMATICA SINICA, 2012, 38(9): 1538-1543. doi: 10.3724/SP.J.1004.2012.01538
Citation: GAN Min, PENG Hui, HUANG Yun-Zhi, DONG Xue-Ping. Initial Distribution Search Algorithm for Self-organizing State Space Model. ACTA AUTOMATICA SINICA, 2012, 38(9): 1538-1543. doi: 10.3724/SP.J.1004.2012.01538

自组织状态空间模型参数初始分布搜索算法

doi: 10.3724/SP.J.1004.2012.01538

Initial Distribution Search Algorithm for Self-organizing State Space Model

  • 摘要: 自组织状态空间模型为估计非线性非高斯状态空间模型中的未知参数提供了一种有效方法. 针对自组织状态空间模型中参数的初始分布难以确定的难点,提出了一种搜索自组织状态空间模型参数初始分布的算法. 所用搜索算法基于一种高效的进化模型,具有全局搜索能力,使得参数的初始分布向真实参数"移动". 数值实验分析结果验证了提出方法的有效性.
  • [1] Kalman R E. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 1960, 82(1): 35 -45[2] Alspach D L, Sorenson H W. Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Transactions on Automatic Control, 1972, 17(4): 439-448[3] Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space model. Journal of Computational and Graphical Statistics, 1996, 5(1): 1-25[4] Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proceedings F: Radar and Signal Processing, 1993, 140(2): 107-113[5] Doucet A, de Freitas N, Gordon N. Sequential Monte Carlo Methods in Practice. Heidelberg: Springer, 2001[6] Zuo Jun-Yi, Zhang Yi-Zhe, Liang Yan. Particle filter based on adaptive part resampling. Acta Automatica Sinica, 2012, 38(4): 647-652(左军毅, 张怡哲, 梁彦. 自适应不完全重采样粒子滤波器. 自动化学报, 2012, 38(4): 647-652)[7] Ouyang Cheng, Ji Hong-Bing, Guo Zhi-Qiang. Improved multiple model particle PHD and CPHD filters. Acta Automatica Sinica, 2012, 38(3): 341-348(欧阳成, 姬红兵, 郭志强. 改进的多模型粒子PHD和CPHD滤波算法. 自动化学报, 2012, 38(3): 341-348)[8] Wang Xiang-Hai, Fang Ling-Ling, Cong Zhi-Huan. Research on real-time multi-target tracking algorithm based on MSPF. Acta Automatica Sinica, 2012, 38(1): 139-144(王相海, 方玲玲, 丛志环. 基于MSPF的实时监控多目标跟踪算法研究. 自动化学报, 2012, 38(1): 139-144)[9] Yang Xiao-Jun, Xing Ke-Yi. Channel fault tolerant target tracking in multi-hop wireless sensor networks based on particle filtering. Acta Automatica Sinica, 2011, 37(4): 440- 448(杨小军, 邢科义. 无线多跳传感器网络下基于粒子滤波的信道容错的目标跟踪方法. 自动化学报, 2011, 37(4): 440-448)[10] Zhao Ling-Ling, Ma Pei-Jun, Su Xiao-Hong. A fast quasi-Monte Carlo-based particle filter algorithm. Acta Automatica Sinica, 2010, 36(9): 1351-1356(赵玲玲, 马培军, 苏小红. 一种快速准蒙特卡罗粒子滤波算法. 自动化学报, 2010, 36(9): 1351-1356)[11] Ye Long, Wang Jing-Ling, Zhang Qin. Genetic resampling particle filter. Acta Automatica Sinica, 2007, 33(8): 885- 887(叶龙, 王京玲, 张勤. 遗传重采样粒子滤波器. 自动化学报, 2007, 33(8): 885-887)[12] Kitagawa G. A self-organizing state-space model. Journal of the American Statistical Association, 1998, 93(443): 1203- 1215[13] Hüseler M, Künsch H R. Approximating and maximizing the likelihood for a general state-space model. Sequential Monte Carlo Methods in Practice. Heidelberg: Springer, 2001. 159-175[14] Yano K. A self-organizing state space model and simplex initial distribution search. Computational Statistics, 2008, 23(2): 197-216[15] Deb K. A population-based algorithm-generator for real-parameter optimization. Soft Computing, 2005, 9(4): 236- 253[16] Cai Z X, Wang Y. A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 658-675[17] Peng H, Ozaki T, Haggan-Ozaki V. Modeling and asset allocation for financial markets based on a discrete time microstructure model. The European Physical Journal B: Condensed Matter, 2003, 31(2): 285-293
  • 加载中
计量
  • 文章访问数:  2003
  • HTML全文浏览量:  68
  • PDF下载量:  826
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-04
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-09-20

目录

    /

    返回文章
    返回