2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反舰导弹航路规划的OACRR-PSO算法

刘钢 老松杨 袁灿 侯绿林 谭东风

刘钢, 老松杨, 袁灿, 侯绿林, 谭东风. 反舰导弹航路规划的OACRR-PSO算法. 自动化学报, 2012, 38(9): 1528-1537. doi: 10.3724/SP.J.1004.2012.01528
引用本文: 刘钢, 老松杨, 袁灿, 侯绿林, 谭东风. 反舰导弹航路规划的OACRR-PSO算法. 自动化学报, 2012, 38(9): 1528-1537. doi: 10.3724/SP.J.1004.2012.01528
LIU Gang, LAO Song-Yang, YUAN Can, HOU Lv-Lin, TAN Dong-Feng. OACRR-PSO Algorithm for Anti-ship Missile Path Planning. ACTA AUTOMATICA SINICA, 2012, 38(9): 1528-1537. doi: 10.3724/SP.J.1004.2012.01528
Citation: LIU Gang, LAO Song-Yang, YUAN Can, HOU Lv-Lin, TAN Dong-Feng. OACRR-PSO Algorithm for Anti-ship Missile Path Planning. ACTA AUTOMATICA SINICA, 2012, 38(9): 1528-1537. doi: 10.3724/SP.J.1004.2012.01528

反舰导弹航路规划的OACRR-PSO算法

doi: 10.3724/SP.J.1004.2012.01528
详细信息
    通讯作者:

    刘钢

OACRR-PSO Algorithm for Anti-ship Missile Path Planning

  • 摘要: 为了提高反舰导弹航路规划算法的搜素效率,从几何学角度对航路规划空间进行了研究,在将功能区域概念融入 逆向航路规划的过程中发现了功能区域的几何学渐变规律,据此提出功能区域簇作为其物理载体.将功能区域簇引入粒子群优化(Particle swarm optimization, PSO)算法,提出了功能区域簇实时约束(Operational area cluster real-time restriction, OACRR)的PSO算法(OACRR-PSO).为了便于表示功能区域簇,采用航路极坐标编码方式.与传统的PSO算法不同的是,考虑到 粒子中分量之间的关联性,该算法在优化过程中并不是对粒子的整个速度分量同时进行更新,而是引入一种分步递归进化 策略对粒子的分量逐步进行更新.在粒子的更新过程中,使用功能区域簇来实时限定粒子位置分量的准确更新范围,使得 算法搜索空间逐步减小,从而加速算法收敛.仿真实验结果表明,分步递归进化策略能够非常显著地提高算法的全局搜索 性能,并且算法收敛速度快、稳定性好.
  • [1] Liu Gang, Lao Song-Yang, Tan Dong-Feng. Converse path planning for anti-ship missiles based on operational area. Systems Engineering and Electronics, 2011, 33(4): 799-805(刘钢, 老松杨, 谭东风. 基于功能区域的反舰导弹逆向航路规划. 系统工程与电子技术, 2011, 33(4): 799-805)[2] Liu Gang, Lao Song-Yang, Tan Dong-Feng, Zhou Zhi-Chao. Fast graphic converse method for path planning of anti-ship missile. Journal of Ballistics, 2011, 23(2): 52-56(刘钢, 老松杨, 谭东风, 周智超. 反舰导弹航路规划图形化快速逆推方法. 弹道学报, 2011, 23(2): 52-56)[3] Ren Min, Huo Xiao-Hua. The real-time path planning method of UAV based on asynchronous bi-precision scrolled window. Science China: Information Science, 2010, 40(4): 561-568(任敏, 霍霄华. 基于异步双精度滚动窗口的无人机实时航迹规划方法. 中国科学: 信息科学, 2010, 40(4): 561-568)[4] Kevin P B. High-Fidelity Real-Time Trajectory Optimization for Reusable Launch Vehicles [Ph.D. dissertation], Naval Postgraduate School, California, USA, 2006[5] Zhu Qing-Bao. Ant algorithm for path planning of mobile robot in a complex environment. Acta Automatica Sinica, 2006, 32(4): 586-593(朱庆保. 复杂环境下的机器人路径规划蚂蚁算法. 自动化学报, 2006, 32(4): 586-593)[6] Ortega L M, Rueda A J, Feito F R. A solution to the path planning problem using angle preprocessing. Robotics and Autonomous Systems, 2009, 58(1): 27-36[7] Zhu Yi, Zhang Tao, Song Jing-Yan. Study on the local minima problem of path planning using potential field method in unknown environments. Acta Automatica Sinica, 2010, 36(8): 1122-1130(朱毅, 张涛, 宋靖雁. 未知环境下势场法路径规划的局部极小问题研究. 自动化学报, 2010, 36(8): 1122-1130)[8] Wang Wei-Ping, Liu Juan. Introduction to unmanned air vehicle route planning methods. Flight Dynamics, 2010, 28(2): 6-10(王维平, 刘娟. 无人飞行器航迹规划方法综述. 飞行力学, 2010, 28(2): 6-10)[9] Melchior P, Orsoni B, Lavialle O, Poty A, Oustaloup A. Consideration of obstacle danger level in path planning using A* and fast-marching optimisation: comparative study. Signal Processing, 2003, 83(11): 2387-2396[10] Zheng C, Li L, Xu F, Sun F, Ding M. Evolutionary route planner for unmanned air vehicles. IEEE Transactions on Robotics, 2005, 21(4): 609-620[11] Fu Yang-Guang, Zhou Cheng-Ping, Ding Ming-Yue. 3-D route planning based on hybrid quantum-behaved particle swarm optimization. Journal of Astronautics, 2010, 31(12): 2657-2664(傅阳光, 周成平, 丁明跃. 基于混合量子粒子群优化算法的三维航迹规划. 宇航学报, 2010, 31(12): 2657-2664)[12] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks. Perth, Australia: IEEE, 1995. 1942-1948[13] Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science. Piscataway, USA: IEEE, 1995. 39-43[14] Shi Y H, Eberhart R. A modified particle swarm optimizer. In: Proceedings of IEEE Congress on Evolutionary Computation. Piscataway, USA: IEEE, 1998. 69-73[15] Ni Tian-Quan, Wang Jian-Dong, Liu Yi-An. Application of particle swarm algorithm in route planning of UAV. Systems Engineering and Electronics, 2011, 33(4): 806-810(倪天权, 王建东, 刘以安. 交叉粒群算法在无人机航路规划中的应用. 系统工程与电子技术, 2011, 33(4): 806-810)[16] Ji Zhen, Zhou Jia-Rui, Liao Hui-Lian, Wu Qing-Hua. A novel intelligent single particle optimizer. Chinese Journal of Computers, 2010, 33(3): 556-561(纪震, 周家锐, 廖惠连, 吴青华. 智能单粒子优化算法. 计算机学报, 2010, 33(3): 556-561)[17] Van den Bergh F. An Analysis of Particle Swarm Optimizers [Ph.D. dissertation], University of Pretoria, South Africa, 2002[18] Shen Yuan-Xia, Wang Guo-Yin, Zeng Chuan-Hua. Correlative particle swarm optimization model. Journal of Software, 2011, 22(4): 695-708(申元霞, 王国胤, 曾传华. 相关性粒子群优化模型. 软件学报, 2011, 22(4): 695-708)[19] Tang Su-Yan, Zhu Yi-Fan, Zhang Wei, Li Qun. Particle swarm optimization algorithm based on creative thinking. Control and Decision, 2011, 26(8): 1181-1186(唐苏妍, 朱一凡, 张伟, 李群. 一种基于创造性思维的粒子群优化算法. 控制与决策, 2011, 26(8): 1181-1186)[20] Egrioglu E, Aladag C H, Basaran M A, Yolcu U, Uslu V R. A new approach based on the optimization of the length of intervals in fuzzy time series. Journal of Intelligent and Fuzzy Systems, 2011, 22(1): 15-19[21] Zhang Yong, Gong Dun-Wei, Zhang Wan-Qiu. A simplex method based improved particle swarm optimization and analysis on its global convergence. Acta Automatica Sinica, 2009, 35(3): 289-298(张勇, 巩敦卫, 张婉秋. 一种基于单纯形法的改进微粒群优化算法及其收敛性分析. 自动化学报, 2009, 35(3): 289-298)[22] Alfi A. PSO with adaptive mutation and inertia weight and its application in parameter estimation of dynamic systems. Acta Automatica Sinica, 2011, 37(5): 541-549
  • 加载中
计量
  • 文章访问数:  1968
  • HTML全文浏览量:  26
  • PDF下载量:  724
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-23
  • 修回日期:  2012-05-09
  • 刊出日期:  2012-09-20

目录

    /

    返回文章
    返回