2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进强跟踪滤波算法及其在汽车状态估计中的应用

周聪 肖建

周聪, 肖建. 改进强跟踪滤波算法及其在汽车状态估计中的应用. 自动化学报, 2012, 38(9): 1520-1527. doi: 10.3724/SP.J.1004.2012.01520
引用本文: 周聪, 肖建. 改进强跟踪滤波算法及其在汽车状态估计中的应用. 自动化学报, 2012, 38(9): 1520-1527. doi: 10.3724/SP.J.1004.2012.01520
ZHOU Cong, XIAO Jian. Improved Strong Track Filter and Its Application to Vehicle State Estimation. ACTA AUTOMATICA SINICA, 2012, 38(9): 1520-1527. doi: 10.3724/SP.J.1004.2012.01520
Citation: ZHOU Cong, XIAO Jian. Improved Strong Track Filter and Its Application to Vehicle State Estimation. ACTA AUTOMATICA SINICA, 2012, 38(9): 1520-1527. doi: 10.3724/SP.J.1004.2012.01520

改进强跟踪滤波算法及其在汽车状态估计中的应用

doi: 10.3724/SP.J.1004.2012.01520
详细信息
    通讯作者:

    周聪

Improved Strong Track Filter and Its Application to Vehicle State Estimation

  • 摘要: 准确实时地获取汽车行驶过程中的状态变量,对汽车底盘控制有着重要的意义,而这些关键状态往往难以直接测量或 者成本较高.结合纵向、侧向和横摆三自由度非线性汽车模型,将改进强跟踪滤波(Improved strong track filter, ISTF)算法应用到汽车的状态估计中,并改进了算 法的稳定性.与扩展卡尔曼滤波(Extended Kalman filter, EKF)算法进行比较分析.通过Carsim和Matlab/Simulink联合仿真和实车双移线实验验证算法,结果 表明,该算法在估计精度、跟踪速度、抑制噪声等方面均优于扩展卡尔曼滤波算法,满足汽车状态估计器的软件性能要求.
  • [1] Venhovens Pau J T, Naab Karl. Vehicle dynamics estimation using Kalman filters. Vehicle System Dynamics, 1999, 32(2-3): 171-184[2] Gustaffson F, Persson N, Drev M, Lofgren M. Virtual sensors of tire pressure and road friction. In: Proceedings of the 2001 Society of Automotive Engineers World Congress. Detroit, USA: SAE, 2001. 2001-01-0796[3] Wenzel T A, Burnham K J, Blundell M V, Williams R A. Dual extended Kalman filter for vehicle state and parameter estimation. Vehicle System Dynamics, 2006, 44(2): 153-171[4] Wenzel T A, Burnham K J, Blundell M V, Williams R A. Kalman filter as a virtual sensor: applied to automotive stability systems. Transactions of the Institute of Measurement and Control, 2007, 29(2): 95-115[5] Tseng H E. A sliding mode lateral velocity observer. In: Proceedings of the 6th International Symposium on Advanced Vehicle Control. Hiroshima, Japan: AVEC, 2002. 387-392[6] Stéphant J, Charara A, Meizel D. Virtual sensor: application to vehicle sideslip angle and transversal forces. IEEE Transactions on Industrial Electronics, 2004, 51(2): 278-289[7] Zhou Dong-Hua, Xi Yu-Geng, Zhang Zhong-Jun. A suboptimal multiple fading extended Kalman filter. Acta Automatica Sinica, 1991, 17(6): 689-695(周东华, 席裕庚, 张钟俊. 一种带多重次优渐消因子的扩展卡尔曼滤波器. 自动化学报, 1991, 17(6): 689-695)[8] Zhou Dong-Hua. Introduction to Adaptive Control of Non-Linear Systems. Beijing: Tsinghua University Press, 2002. 44-75 (周东华. 非线性系统的自适应控制导论. 北京: 清华大学出版社, 2002. 44-75)[9] Zhou Dong-Hua, Ye Yin-Zhong. Modern Fault Diagnosis and Fault-Tolerant Control. Beijing: Tsinghua University Press, 2000. 60-76 (周东华, 叶银忠. 现代故障诊断与容错控制. 北京: 清华大学出版社, 2000. 60-76)[10] Arbor A. CarSim Reference Manual. USA: Mechanical Simulation Corporation, 2005. 30-53
  • 加载中
计量
  • 文章访问数:  2269
  • HTML全文浏览量:  117
  • PDF下载量:  1007
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-31
  • 修回日期:  2012-04-10
  • 刊出日期:  2012-09-20

目录

    /

    返回文章
    返回